K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

\(S=\dfrac{12+20}{2}\cdot8=16\cdot8=128\left(cm^2\right)\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Bài 1:
Diện tích ABCD: $\frac{(AB+CD)\times AD}{2}=\frac{(12+18)\times 8}{2}=120$ (cm2)

Diện tích $BCD$ là: $CD\times AD:2=8\times 18:2=72$ (cm2)

Tỉ số phần trăm diện tích tam giác BCD và hình thang ABCD là:

$72:120\times 100=60$ (%)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Bài 2:

Diện tích hình tam giác: $9\times 12:2=58,5$ (cm2)

Diện tích hình thang: $(13+22)\times 12:2=210$ (cm2)

Diện tích hình H là: $58,5+210=268,5$ (cm2)

18 tháng 5 2018

AB = ?????? bao nhiêu hã bạn

20 tháng 7 2023

Bài 5

A B C D E y x

\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)

\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)

\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)

Xét tg ADE có

\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)

\(\Rightarrow Ax\perp Dy\)

Bài 6:

A B C E D

a/

Ta có

AB//CD => AB//DE

BE//AB (gt)

=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)

b/

CD - DE = CE

Mà AB = DE (cmt)

=> CD - AB = CE

c/

Xét tg BCE có

BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)

Mà CE = CD - DE và DE = AB (cmt) và BE = AD

=> BC+BE = BC + AD>CE = CD - AB

 

 

20 tháng 7 2023

loading...

Gọi G là giao điểm của hai đường phân giác Ax và By 

Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)

           \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )

     ⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\)

           \(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)

      ⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900

          Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)

               ⇒ \(\widehat{DGA}\)  = 1800 - 900 = 900

Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)

                                           

 

6 tháng 6 2021

Kẻ \(AH;BK\) vuông góc với DC (H,K thuộc DC)

Xét \(\Delta\) AHD và \(\Delta\)BKC:

\(\widehat{AHD}=\widehat{BKC}=90^0\)

AD=BC( do ABCD là hình thang cân)

\(\widehat{D}=\widehat{C}\) (Hai góc cùng kề một đáy trong htc)

nên \(\Delta\)AHD=\(\Delta\)BKC(ch-gn) \(\Rightarrow DH=KC\)

Có AB//DC và AH//BK => ABKH là hbh => AB=HK

Có \(DH+HK+KC=DC\) \(\Leftrightarrow2KC+AB=DC\Leftrightarrow KC=\dfrac{50-14}{2}=18\) (cm)

Áp dụng hệ thức trong tam giác vuông CDB có:

\(BK^2=DK.KC\Leftrightarrow BK=\sqrt{DK.KC}=\sqrt{\left(DC-KC\right).KC}=24\)  (cm)

Diện tích hình thang là: \(S=\dfrac{1}{2}BK\left(AB+CD\right)=\dfrac{1}{2}.24\left(14+50\right)=768\) (cm2)

1 tháng 8 2023

Vì ABCD là hình thang cân nên \(BH=\dfrac{AB-CD}{2}=\dfrac{26-10}{2}=8\)

\(AH=AB-BH=26-8=18\)

Áp dụng hệ thức lượng: \(CH^2=AH.HB\Rightarrow CH=\sqrt{18.8}=12\)

\(S_{ABCD}=\dfrac{\left(DC+AB\right).CH}{2}=\dfrac{\left(10+26\right).12}{2}=216\)

21 tháng 11 2023

AB//CD

AH\(\perp\)DC

Do đó: AH\(\perp\)AB

Xét tứ giác ABCH có AB//CH

nên ABCH là hình thang

Hình thang ABCH có AB\(\perp\)AH

nên ABCH là hình thang vuông