Cho tam giác ABC có góc A=900. Lấy điểm M là trung điểm cạnh AC. Trên tia đối tia MB lấy điểm E sao cho BM=ME.
a) Chứng minh tam giác ABM=tam giác CEM
b) Chứng minh AB//CE
c) Trên tia đối tia AB lấy điểm H sao cho AB=AH
Chứng minh HM=ME
* Mấy bạn giải giúp mình nha! Mình tick nè ^^ Sắp thi rồi, giải giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó; ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD
a: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: ΔMAB=ΔMEC
=>góc MAB=góc MEC
=>AB//CE
c: Xét ΔMHA vuông tại H và ΔMKE vuông tại K có
MA=ME
góc HAM=góc KEA
=>ΔMHA=ΔMKE
=>MH=MK
=>M là trung điểm của HK
Tự vẽ hình nhé
a) Xét \(\Delta\)AMB và \(\Delta\)CME có : MA = MC ( M: trung điểm) ; MB =ME (g t) ; góc AMB =góc CME ( đối đỉnh)
=> \(\Delta\)AMB và \(\Delta\)CME ( c-g-c)
b) => góc MEC = góc MAB = 90 ( góc tương úng)
=> EC vuông góc AC
mà AB cuông góc AC
=> EC //AB
c) Vì \(\Delta\)AMB và \(\Delta\)CME => AB = CE ( cạnh tương úng)
mà AK =AB => AK = CE.
a: Xet ΔAHB và ΔAHC có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: Xét ΔAHB vuông tại H và ΔDHC vuông tại H có
HA=HD
HB=HC
=>ΔAHB=ΔDHC
=>góc HAB=góc HDC
=>AB//CD
c: Xét tứ giác ABCE có
M là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//CE
mà CD//AB
nên C,E,D thẳng hàng
a/ \(\Delta ABM\)và \(\Delta CDM\)có:
BM = DM (gt)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
AM = CM (M là trung điểm AC)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c) (đpcm)
b/ Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a)
=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng) ở vị trí so le trong
=> AB // CD (đpcm)