Cho hình chóp S.ABCD đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm AB, AD, SC. CMR mp(MNP) chia khối chóp thành 2 phần có thể tích bằng nhau.
Dốt hình ko gian ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có: α ∩ ( S C D ) = M N ⇒ M N / / C D .
Do đó α là (ABMN).
Mặt phẳng α chia khối chóp thành 2 phần có thể tích bằng nhau là
V S . A B M N = V A B C D M N ⇒ V S . A B M N = 1 2 . V S . A B C D 1
Ta có:
V S . A B C = V S . A C D = 1 2 V S . A B C D
Đặt S N S D = x với (0<x<1), khi đó theo Ta-let ta có S N S D = S M S C = x .
Mặt khác
V S . A B M V S . A B C = S A S A . S B S B . S M S C = x ⇒ V S . A B M = x 2 V S . A B C D
V S . A M N V S . A C D = S A S A . S M S C . S N S D = x 2 ⇒ V S . A M N = x 2 2 V S . A B C D
⇒ V S . A B M N = V S . A B M + V S . A M N = ( x 2 + x 2 2 ) . V S . A B C D 2
Từ (1), (2) suy ra
x 2 + x 2 2 = 1 2 ⇔ x 2 + x - 1 = 0
x = - 1 - 5 2 v à x = - 1 + 5 2
Đối chiếu điều kiện của x ta được S N S D = - 1 + 5 2
Bài này biểu diễn ngược hơi mệt xíu, cộng trừ mấy lần mới ra:
Gọi O là tâm đáy thì \(\overrightarrow{SO}=\dfrac{1}{2}\overrightarrow{SA}+\dfrac{1}{2}\overrightarrow{SC}=\dfrac{1}{2}\overrightarrow{SB}+\dfrac{1}{2}\overrightarrow{SD}\) (1)
\(\Rightarrow\overrightarrow{SA}+\overrightarrow{SC}=\overrightarrow{SB}+\overrightarrow{SD}\) (2)
Bây giờ tìm cách đưa \(\overrightarrow{SA};\overrightarrow{SB};\overrightarrow{SC};\overrightarrow{SD}\) biểu diễn qua \(\overrightarrow{SM};\overrightarrow{SN};\overrightarrow{SG}\) là được
Với \(\overrightarrow{SB};\overrightarrow{SD}\) đơn giản: \(\overrightarrow{SB}+\overrightarrow{SD}=2\overrightarrow{SO}=3\overrightarrow{SG}\)
\(\overrightarrow{SA}=\overrightarrow{SM}+\overrightarrow{MA}=\overrightarrow{SM}+\overrightarrow{ON}=\overrightarrow{SM}+\overrightarrow{OS}+\overrightarrow{SN}=\overrightarrow{SM}-\dfrac{3}{2}\overrightarrow{SG}+\overrightarrow{SN}\)
Đặt \(\overrightarrow{SC}=x.\overrightarrow{SH}\)
Thế vào (2):
\(\Rightarrow\overrightarrow{SM}-\dfrac{3}{2}\overrightarrow{SG}+\overrightarrow{SN}+x.\overrightarrow{SH}=3\overrightarrow{SG}\)
\(\Rightarrow\overrightarrow{SM}=\dfrac{9}{2}\overrightarrow{SG}-\overrightarrow{SN}-x.\overrightarrow{SH}\)
Đáp án C
Giả sử S D → = m . S M → ; S B → = n . S N → .
S A → + S C → = S B → + S D →
Do A; M; N; K đồng phẳng nên m + n = 3 .
V S . A K M V S . A B C = 1 2 .1. 1 m = 1 2 m ⇒ V S . A K M V = 1 4 m
Tương tự ta có V S . A K N V = 1 4 n ⇒ V ' V = 1 4 . m + n m n = 3 4 m n ≥ 3 m + n 2 = 3 3 2 = 1 3 .
Dấu bằng xảy ra khi m = n = 1,5 .
Gọi O là tâm hình bình hành; MN cắt AC tại J
Kẻ PE//SO thì E là trung điểm của OC suy ra \(IO=\frac{1}{2}PE=\frac{1}{4}SO\)
Gọi thể tích khối chóp là V
Ta có : \(\frac{V_{S.B'D'P}}{V_{S.BCD}}=\frac{SB'}{SB}.\frac{SD'}{SD}.\frac{SP}{SC}=\frac{3}{4}.\frac{3}{4}.\frac{1}{2}=\frac{9}{32}\)
suy ra \(V_{S.B'D'P}=\frac{9}{32}V_{S.BCD}=\frac{9}{64}V\)
Suy ra \(V_{BDD'BPC}=\frac{1}{2}V-\frac{9}{64}V=\frac{23}{64}V\)
pcm \(V_{MNDD'B'B}=\frac{9}{64}V\)
Ta có : \(V_{MNDD'B'B}=V_{J.BB'D'D}+V_{M.BB'J}+V_{N.DD'J}=V_{J.BB'D'D}+2.V_{M.BB'J}\)
Với \(V_{J.BB'D'D}=\frac{1}{2}V_{A.BB'D'D}=\frac{1}{2}\left[1-\left(\frac{3}{4}\right)^2\right].V_{A.SBD}\)\(=\frac{1}{2}.\frac{7}{16}.\frac{1}{2}V=\frac{7}{64}V\)
\(V_{M.BB'J}=V_{B'.BMJ}=\frac{1}{4}V_{S.BMJ}=\frac{1}{4}.\frac{1}{8}V_{S.ABD}\)\(=\frac{1}{4}.\frac{1}{8}.\frac{1}{2}V=\frac{1}{64}V\)
Vậy \(V_{MNDD'B'B}=V_{J.BB'D'D}+2.V_{M.BB'J}=\frac{7}{64}V+2\frac{1}{64}V=\frac{9}{64}V\left(đpcm\right)\)
Gọi H là khối đa diện nằm bên dưới mp(MNP)
Gọi h,S,V lần lượt là chiều cao, diện tích đáy, thể tích của khối chóp S.ABCD
Dễ thấy:
\(\hept{\begin{cases}S_{DNU}=S_{BMT}=S_{AMN}=\frac{1}{4}S_{ABD}=\frac{1}{8}S\\d\left(p;\left(ABCD\right)\right)=\frac{1}{2}h;d\left(q;\left(ABCD\right)\right)=d\left(r;\left(ABCD\right)\right)=\frac{1}{4}h\end{cases}}\)
Ta có: \(S_{CTU}=S+\frac{1}{8}S=\frac{9}{8}S\)
\(V_{P\cdot CTU}=\frac{1}{3}\cdot\frac{1}{2}h\cdot\frac{9}{8}S=\frac{9}{16}V\)
\(V_{Q\cdot UDN}=V_{R\cdot BMT}=\frac{1}{3}\cdot\frac{1}{4}\cdot\frac{1}{8}S=\frac{1}{32}V\)
\(V_H=V_{P\cdot CTU}-V_{Q\cdot UDN}-V_{R\cdot BMT}=\frac{1}{2}V\)
=> đpcm
Nguồn: Chú lùn thứ 8