K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

Với x = S A S A = 1 ; y = S M S B , z = S N S C ; t = S P S D

ta có 1 x + 1 z = 1 y + 1 t  và xét tam giác SAC ta có

Mặt khác ba điểm A, I, N thẳng hang nên

1 4 + 1 4 z = 1 ⇔ z = 1 3

Do đó  1 y + 1 t = 1 1 + 1 1 3 = 4 ⇒ y = t 4 t - 1

Vì vậy

Dấu bằng đạt tại t = 1 2 ; y = 1 2 .  Tức mặt phẳng α đi qua trung điểm các cạnh SB. SD.

Chọn đáp án C.

30 tháng 9 2018

Đáp án D

Gọi O là tâm của hình bình hành ABCD, nối  S O ∩ A M = I .

Qua I kẻ đường thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra 

21 tháng 10 2017

Đáp án D

Gọi O là tâm của hình bình hành ABCD, nối  S O ∩ A M = I

Qua I kẻ đương thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra S H S B = S K S D = S I S O .  

Điểm M ∈ S C thỏa mãn  5 S M = 2 S C ⇒ S M S C = 2 5

Xét tam giác SAC, có:

M S M C . A C A O . I O I   S = 1 ⇒ I O S I = 4 3 ⇒ S I S O = 3 7

Khi đó:

V S . A K M V S . A D C = S K S D . S M S C ; V S . A H M V S . A B C = S H S B . S M S C  

Suy ra:

V S . A H M K V S . A B C D = S M S C . S H S B = 2 5 . 3 7 = 6 35 ⇒ V S . A H M K = 6 36 V S . A B C D

3 tháng 12 2017

Đáp án A

Phương pháp giải:

Dùng định lí Thalet và phương pháp tỉ số thể tích để tính thể tích khối chóp cần tìm

6 tháng 10 2017

Đáp án D

Do  α  qua M song song với mặt đáy nên em kẻ  MN / / AB   N ∈ SB ;

Chú ý: Em nhớ rằng, công thức tính tỉ số thể tích chỉ áp dụng cho khối chóp tam giác. Còn với khối chóp tứ giác, ngũ giác, lục giác,… em cần chia ra thành các khối chóp tam giác và áp dụng công thức.

Công thức giải nhanh:

Cắt khối chóp bởi mặt phẳng song song với đáy: Xét khối chóp  S . A 1 A 2 . .. A n , mặt phẳng (P) song song với mặt đáy cắt cạnh  SA 1  tại m thỏa mãn  SM SA 1 = k . Khi đó (P) chia khối chóp thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V' và khối đa diện ban đầu có thể tích V thì  V ' V = k 3

Nên  ⇒ V SMNPQ V SABCD = ( 1 3 ) 2 = 1 27

14 tháng 10 2017

31 tháng 3 2019

13 tháng 2 2017

Chọn D.

Phương pháp:

+) Sử dụng công thức tỉ lệ thể tích:

Cho khối chóp S.ABC, các điểm A 1 ,   B 1 ,   C 1  lần lượt thuộc SA, SB, SC

+) Chia khối chóp đã cho thành các khối chóp nhỏ, tính thể tích của từng khối chóp.

Cách giải:

I,J lần lượt là trung điểm của SM, SC (do K là trung điểm của SA)

Trong (SAB), gọi N là giao điểm của IK và AB

Trong (ABCD), kẻ đường thẳng qua N song song AC, cắt AD tại Q, CD tại P.

Khi đó, dễ dàng chứng minh P, Q lần lượt là trung điểm của CD, AD và

*) Gọi L là trung điểm của SD

Khi đó, khối đa diện SKJPQD được chia làm 2 khối: hình lăng trụ tam giác KJL.QPD và hình chóp tam giác S.KJL

5 tháng 11 2018

Chọn A.

Suy ra