tìm số nguyên tố x sao cho
x3+x=20212020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $x$ lẻ thì $x^y+1$ chẵn, mà $x^y+1>2$ với $x,y\in\mathbb{P}$ nên $x^y+1$ không thể là số nguyên tố (trái giả thiết)
Do đó $x$ chẵn $\Rightarrow x=2$
$x^y+1=2^y+1$
Nếu $y$ chẵn thì $y=2$. Khi đó $x^y+1=2^2+1=5$ cũng là snt (tm)
Nếu $y$ lẻ:
$x^y+1=2^y+1\equiv (-1)^y+1\equiv -1+1\equiv \pmod 3$
Mà $2^y+1>3$ với mọi $y$ nguyên tố lẻ nên $2^y+1$ không là snt (trái giả thiết)
Vậy $x=y=2$
x + 1.x + 2 = 2x + 2
= 2 ( x + 1 )
Vì 2 ( x + 1 ) chẵn nên x + 1.x + 2 chẵn
mà x + 1.x + 2 nguyên tố
vậy nên 2(x+1) = 2
x + 1 = 1
x = 0
Vì x là số nguyên tố nên x = 0 ( không thỏa mãn )
Vậy không tồn tại x
Đúng thì k nha!
Xét 2 trường hợp x = 2 và x >2.
Với x = 2. Vì 2 là số nguyên tố và x2 + 1 = 5 cũng là số nguyên tố => x = 2 thỏa mãn
Với x > 2, vì x là nguyên tố => x chia 2 dư 1 => x2 chia cho 2 dư 1 => x2 +1 chia hết cho 2 . Mà x2 + 1 > 2 => x2 +1 không là số nguyên tố. Vậy không có số x nguyên tố nào lớn hơn 2 mà x2 + 1 cũng là số nguyên tố.
b)
Để A là số nguyên tố thì \(\dfrac{4}{x-3}\) phải là số nguyên tố có một nghiệm bằng 1 và bằng chính nó
\(x-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\). Mặt khác ta thấy chỉ có 2 là số nguyên tố \(\Rightarrow x-3=2\Leftrightarrow x=5\)
Giải:
a) Để \(A=\dfrac{4}{x-3}\) là số chính phương thì A là Ư chính phương của 4
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{1;4\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 4 |
x | 4 | 7 |
Vậy \(x\in\left\{4;7\right\}\)
b) Để \(A=\dfrac{4}{x-3}\) là số nguyên tố thì \(4⋮\left(x-3\right)\)
\(4⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta thấy:
Vì chỉ có mỗi 2 là số nguyên tố nên ta có:
x-3=2
x=5