K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2023

a) Ta có: (3,5)=1 

+) Nếu 3x+5 chẵn

=> Loại

+) Nếu 3x+5 lẻ

=> x=2

b) +) x=2 (Loại)

+) x=3 (TM)

+) x>3 \(\Rightarrow\left[{}\begin{matrix}x=3k+1\\x=3k+2\end{matrix}\right.\)

-) x=3k+1 => x+8=3k+9 chia hết cho 3 (Loại)

-) x=3k+2 => x+10=3k+12 chia hết cho 3(Loại)

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

Lời giải:

Nếu $x$ lẻ thì $x^y+1$ chẵn, mà $x^y+1>2$ với $x,y\in\mathbb{P}$ nên $x^y+1$ không thể là số nguyên tố (trái giả thiết)

Do đó $x$ chẵn $\Rightarrow x=2$
$x^y+1=2^y+1$

Nếu $y$ chẵn thì $y=2$. Khi đó $x^y+1=2^2+1=5$ cũng là snt (tm)

Nếu $y$ lẻ:

$x^y+1=2^y+1\equiv (-1)^y+1\equiv -1+1\equiv \pmod 3$

Mà $2^y+1>3$ với mọi $y$ nguyên tố lẻ nên $2^y+1$ không là snt (trái giả thiết)

Vậy $x=y=2$

15 tháng 6 2017

x + 1.x + 2 = 2x + 2 

                 = 2 ( x + 1 )

Vì 2 ( x + 1 ) chẵn nên x + 1.x + 2 chẵn

mà x + 1.x + 2 nguyên tố

vậy nên 2(x+1) = 2

             x + 1   = 1

             x         = 0

Vì x là số nguyên tố nên x = 0 ( không thỏa mãn )

             Vậy không tồn tại x 

Đúng thì k nha!

18 tháng 11 2015

Vì x là SNT nên :

- Nếu x=2

=>\(x^2-1=2^2-1=4-1=3\)(là SNT)

=> x=2(Chọn)

-Nếu x>2

=> x là số lẻ=>\(x^2\)là số lẻ=>\(x^2-1\)là số chẵn hay \(x^2-1\)chia hết cho 2

  Mà \(x^2-1\)>2(Vì x>2) nên \(x^2-1\)là hợp số

     => x > 2 (Loại)

          Vậy x=2

23 tháng 11 2014

Xét 2 trường hợp x = 2 và x >2.

Với x = 2. Vì 2 là số nguyên tố và x2 + 1 = 5 cũng là số nguyên tố => x = 2 thỏa mãn

Với x > 2, vì x là nguyên tố => x chia 2 dư 1 => x2 chia cho 2 dư 1 => x2 +1 chia hết cho 2 . Mà x2 + 1 > 2 => x2 +1 không là số nguyên tố. Vậy không có số x nguyên tố nào lớn hơn 2 mà x2 + 1 cũng là số nguyên tố. 

2 tháng 1 2015

2      100%

 

15 tháng 1 2019

22=4-1=3

10 tháng 6 2021

b) 

Để A là số nguyên tố thì \(\dfrac{4}{x-3}\) phải là số nguyên tố có một nghiệm bằng 1 và bằng chính nó

\(x-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\). Mặt khác ta thấy chỉ có 2 là số nguyên tố \(\Rightarrow x-3=2\Leftrightarrow x=5\)

Giải:

a) Để \(A=\dfrac{4}{x-3}\) là số chính phương thì A là Ư chính phương của 4

\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{1;4\right\}\) 

Ta có bảng giá trị:

x-314
x47

Vậy \(x\in\left\{4;7\right\}\) 

b) Để \(A=\dfrac{4}{x-3}\) là số nguyên tố thì \(4⋮\left(x-3\right)\) 

\(4⋮\left(x-3\right)\) 

\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

Ta thấy: 

Vì chỉ có mỗi 2 là số nguyên tố nên ta có:

x-3=2

x=5