Cho tam giác ABC các đường cao BD, CE, từ B và C kể BH, CK vuông góc với đường thẳng ED cắt ED tại H và K. Chúng minh rằng DH = EK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A dựng đường thẳng vuông góc với BC căt BC tại M
Xét tg vuông ABM và tg vuông BDH có
\(BD\perp BA;HB\perp AM\Rightarrow\widehat{HBD}=\widehat{MAB}\) (góc có cạnh tương ứng vuông góc)
\(BD=BA\left(gt\right)\)
\(\Rightarrow\Delta BDH=\Delta ABM\) (hai tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau)
\(\Rightarrow DH=BM\)
Chứng minh tương tự ta cũng có \(EK=CM\)
\(\Rightarrow DH+EK=BM+CM=BC\left(đpcm\right)\)
4: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
5: Xét ΔHDE và ΔHCB có
góc HDE=góc HCB
góc DHE=góc CHB
=>ΔHDE đồng dạng với ΔHCB
=>DE/CB=HD/HC
=>DE*HC=HD*BC
tam giác ABC vuông tại A (gt)
=> góc B + góc C = 90
mà góc B = 60
=> góc C = 30
=> góc C < góc B xét tam giác ABC
=> AB < AC (đl)
tgiac ABC vuông ở , B=60¤=> C=30¤
=>AC>AB vì
AC là cạnh đối diện với góc lớn hơn (60¤)
AB.......................................nhở hơn (30¤)..