K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

7
11 tháng 8 2015

đăng giết người à           

11 tháng 8 2015

Nhìn là hết muốn làm.

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

1 tháng 5 2020

với n = 1 có : ( 1 + 1 ) chia hết cho 2

giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k

cần chứng minh đúng với n = k + 1

tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1

Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )

= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1

vậy ta có đpcm

22 tháng 8 2021

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

22 tháng 8 2021

 n3−n⋮3∀n∈Z

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

13 tháng 2 2016

Giả sử ta có :n = 2 =>(n-1)(n+2)+2 không chia hết cho 9

=>(n-1)(n+2)+2 không chia hết cho 9 với mọi n !!!!!!!

Chắc chắn đúng !!!!!!!!!!!!!!

Ủng hộ mình nha bạn ơi !!!!!!!!!!!!!!!!!!!