Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có: n2 - 1 và n2 + 1 (n không chia hết cho 3, n > 2, n \(\in\)N gì đó)
Xét n:
Vì n không chia hết cho 3
Suy ra n2 chia 3 dư 1
Xét ba số tự nhiên liên tiếp: n2 - 1; n2; n2 + 1
Vì n2 chia 3 dư 1
Nên n2 - 1 \(⋮\)3
Suy ra n2 - 1 là hợp số
Vậy...
\(n\) lớn hơn 2 và ko chia hết cho 3 nên \(n\) tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2.
Nếu \(n\) có dạng 3k + 2
n2 + 1 = ( 3k + 2 )2 + 1 = 9k2 + 12k + 5
n2 - 1 = 9k2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n2 + 1= ( 3k + 1 )2 + 1 = 9k2 + 6k + 2
n2 - 1= ( 3k + 1 )2 - 1 = 9k2+ 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n2 + 1 và n2- 1 ko thể đồng thời là số nguyên tố.
Chúc học tốt!!!
a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)
b) \(B=n\left(n+1\right)+3\)
Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2
\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)
Nếu n là số chẵn thì (n + 6) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Nếu n là số lẻ thì (n + 7) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2
1.
Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:
A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.
Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.
Vậy A = (p – 1)(p + 1) chia hết cho 24
a) a chia hết cho b ; b khác 1 . gọi thương là c thì c < a .
a - 1 < a nên các số từ a : b đến a đều nhỏ hơn a nên các số đó đều không chia hết cho a
Vậy,...
b) Nếu a; b đều là số nguyên tố khác 2 => a; b lẻ => a + b chẵn => c chẵn ; không là số nguyên tố (trái với đề bài)
Vậy...
c) Đề sai: Vì dụ 2 + 2 = 4