K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

ngu quá

10 tháng 1 2020

Ta có: \(a^6-1=\left(a^3+1\right)\left(a^3-1\right)\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)

* a không chia hết cho 7 nên a có 6 dạng: 7k + 1; 7k + 2; 7k + 3; 7k + 4; 7k + 5; 7k + 6

+) a = 7k + 1

\(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(7k+1-1\right)\left(a^2+a+1\right)\)

\(=7k\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 2

\(\Rightarrow a^2=\left(7k+2\right)^2=49k^2+28k+4\)

\(\Rightarrow a^2+a+1=\left(49k^2+28k+4+7k+2+1\right)\)

\(=49k^2+35k+7⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 3

\(\Rightarrow a^2=\left(7k+3\right)^2=49k^2+42k+9\)

\(\Rightarrow a^2+a+1=\left(49k^2+42k+9-7k-3+1\right)\)

\(=49k^2+35k+7⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 4

\(\Rightarrow a^2=\left(7k+4\right)^2=49k^2+56k+16\)

\(\Rightarrow a^2+a+1=\left(49k^2+56k+16+7k+4+1\right)\)

\(\Rightarrow a^2+a+1=\left(49k^2+63k+21\right)⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 5

\(\Rightarrow a^2=\left(7k+5\right)^2=49k^2+70k+25\)

\(\Rightarrow a^2-a+1=\left(49k^2+70k+25-7k-5+1\right)\)

\(=\left(49k^2+63k+21\right)⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 6

\(\Rightarrow a^2=\left(7k+6\right)^2=49k^2+84k+36\)

\(\Rightarrow a^2+a+1=\left(49k^2+84k+36+7k+5+1\right)\)

\(=49k^2+91k+42⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

Vậy \(a^6-1⋮7\)với mọi a không là bội của 7

11 tháng 8 2017

Xét \(a^6-1=\left(a^3-1\right)\left(a^3+1\right)\)

Đặt  \(a=7k⊥r\)với r=1;2;3. (vì a không là bội của 7)

Ta có \(a^3=\left(7k⊥r\right)^3=343k^3⊥147k^2r+21kr^2⊥r^3\)

Xét r với lần lượt các giá trị 1;2;3.

Từ đó ta suy ra được \(a^3=7l⊥1\)

Xét từng trường hợp trên ta suy ra \(\left(a^3-1\right)\left(a^3+1\right)⋮7\)dẫn đến \(\left(a^6-1\right)⋮7\)

Vậy........

3 tháng 11 2017

https://cunghoctot.vn/Forum/Topic/1002821

bạn cứ vào táp này là có lời giải

3 tháng 11 2017

Ta có nếu a không là bội của 7 thì a không chia hết cho 7 với mọi a là số nguyên lớn hơn 0

Mà a không chia hết cho 7 tức là a chia cho 7 dư 1, 2, 3, 4, 5 hoặc 6

Vì vậy a^6 chia cho 7 sẽ dư 1^6, 2^6, 3^6, 4^6, 5^6 hoặc 6^6

Vậy nếu 1^6 - 1, 2^6 - 1, 3^6 - 1, 4^6 - 1, 5^6 - 1, 6^6 - 1 chia hết cho 7 thì a^6 - 1 chia hết cho 7

Thật vậy :

- 1^6 - 1 = 1 - 1 = 0 chia hết cho 7

- 2^6 - 1 = 64 - 1 = 63 chia hết cho 7

- 3^6 - 1 = 729 - 1 = 728 chia hết cho 7

- 4^6 - 1 = 4096 - 1 = 4095 chia hết cho 7

- 5^6 - 1 = 15625 - 1 = 15624 chia hết cho 7

- 6^6 - 1 = 46656 - 1 = 46655 chia hết cho 7

Vậy a^6 - 1 chia hết cho 7 với mọi x thuộc số nguyên lớn hơn 0 không chia hết cho 7

22 tháng 11 2021

a/ 

\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)

\(=\left(98a+7b\right)+3\left(a+b\right)\)

\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)

\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)

b/ xem lại đề bài

18 tháng 2 2020

Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))

a) 3x + 5y ⋮ 7

=> 5.(3x + 5y) ⋮ 7

<=> 15x + 25y ⋮ 7 (1)

Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)

Lấy (1) trừ (2), ta có:

(15x + 25y) - (14x + 21y) ⋮ 7

<=> x + 4y ⋮ 7

Điều ngược lại đương nhiên là đúng =)))

Chúc em học tốt !!!

18 tháng 2 2020

cảm ơn nhé

14 tháng 2 2016

Xét phép trừ:

10(a + 5b) - (10a + b)

= 10a + 50b - 10a - b

= 49b chia hết cho 7 (1)

+ Nếu a + 5b chia hết cho 7 => 10(a + 5b) chia hết cho 7  (2)

Từ (1) và (2) => 10a + b chia hết cho 7

+ Nếu 10a + b chia hết cho 7   (3)

Từ (1) và (3) => 10(a + 5b) chia hết cho 7 => a + 5b chia hết cho 7 (Vì (7; 10) = 1)

Vậy a + 5b chia hết cho 7 khi và chỉ khi 10a + b chia hết cho 7

DD
10 tháng 12 2021

a) \(\left(a+b\right)⋮6\Leftrightarrow\left(a+b\right)-6.4b⋮6\Leftrightarrow\left(a-23b\right)⋮6\).

b) \(\left(a+b\right)⋮7\Leftrightarrow\left(a+b\right)-7.3b⋮7\Leftrightarrow\left(a-20b\right)⋮7\).