K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Theo đề bài ta có : x−12=y+34=z−56x−12=y+34=z−56 và 5z−3x−4y=505z−3x−4y=50

\Leftrightarrow 3(x−1)6=4(y+3)16=5(z−5)303(x−1)6=4(y+3)16=5(z−5)30 và 5z−3x−4y=505z−3x−4y=50

\Leftrightarrow 3x−36=4y+1216=5z−25303x−36=4y+1216=5z−2530 và 5z−3x−4y=505z−3x−4y=50

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

3x−36=4y+1216=5z−2530=(5z−25)−(3x−3)−(4y+12)30−6−16=5z−3x−4y−25+3−128=168=23x−36=4y+1216=5z−2530=(5z−25)−(3x−3)−(4y+12)30−6−16=5z−3x−4y−25+3−128=168=2

\Rightarrow x−12=2x−12=2 \Rightarrow x−1=4x−1=4 \Leftrightarrow x=5x=5

\Rightarrow y+34=2y+34=2 \Rightarrow y+3=8y+3=8 \Leftrightarrow y=5y=5

\Rightarrow z−56=2z−56=2 \Rightarrow z−5=12z−5=12 \Leftrightarrow z=17z=17

tk nha bạn

3: 10x=6y=5z

\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)

hay x/3=y/5=z/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)

Do đó: x=36; y=60; z=72

4: Ta có: 9x=3y=2z

nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)

hay x/2=y/6=z/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)

Do đó: x=20; y=60; z=90

1 tháng 7 2016

X/2=y/2=z/4=x+y+z/9=18/9=2

X=2.2=4

Y=2.3=6

Z=2.4=8

1 tháng 7 2016

a) x/2 = y/3 = z/4 va x + y + z =18.

Áp dụng tính chất của dãy tỉ số bằng nhau:

x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2

=> x= 2*2 =4

y= 2* 3=6 

z=2*4= 8

Vậy x=4; y=6; z=8.

b) x/5 = y/-6 = z/7 va x + y - z =32.

Áp dụng tính chất của dãy tỉ số bằng nhau:

x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4

=> x= -4 *5 = -20

y= -4* (-6)= 24

z= -4 * 7 = -28

Vậy x=-20 ; y= 24; x= -28.

c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.

x/5 = 2x/10

y/3 = 3y/9 

z/2 = 4z/8 

Áp dụng tính chất của dãy tỉ số bằng nhau:

2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2

=> x= 2*5 = 10

y= 2*3 =6

x= 2*2 =4

Vậy x= 10; y=6; z=4

d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.

x/2 =3x/6

y/3 = 2y/6

z/6 = 2z/12 

Áp dụng tính chất của dãy tỉ số bằng nhau:

3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2

=> x= 2*2 =4

y= 2*3 =6

z= 2* 6 =12

Vậy x=4; y=6; z=12

12 tháng 10 2015

khó + lười + nhiều = không làm

16 tháng 5 2019

Hello

4 tháng 7 2017

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

4 tháng 7 2017

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21