CMR 2n+1,2n+3 là 2 số nguyên tố cùng nhau với n thuộc N
mình cần rất gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯCLN\left(2n+1;2n+3\right)\)
\(\Rightarrow2n+1⋮d;2n+3⋮d\)
\(\Rightarrow2n+3-2n-1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=2\)
Mà \(2n+1;2n+3\) là các số lẻ nên \(d=1\)
=> đpcm
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Gọi d là ƯC(2n+1;2n+3)
=> 2n+3 - ( 2n + 1) chia hết cho d
=> 2 chia hết cho d
Mà 2n+3 là số lẻ
=> d=1
Vậy ............
a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\)
\(\Rightarrow n+2;n+3NTCN\)
b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)
\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2n+3;3n+5NTCN\)
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
Không biết thế này có đúng không nhưng mình vẫn muốn hỏi
Gọi d là WCLN(2n+3, 3m+4); n thuộc N
Ta có: 2n+3 chia hết cho d; 3m+4 chia hết cho d
3(2n+3) chia hết cho d; 2(3m+4) chia hết cho d
nên (6m+9-6n+8)
=> d chia hết cho 1
=> d=1
Ok để mình giúp bạn
Gọi d là ước chung lớn nhất của (2n+1, 2n+3)
=> 2n+1 chia hết cho d
2n+3 cũng chia hết cho d
Trừ đi => 2 chia hết cho d
=> d =1 hoặc 2
Nếu d=2 => 2n+1; 2n+3 chia hết cho 2
=> Vô lí do 2n+1; 2n+3 là 2 số lẻ
=> d=1
=> (2n+1; 2n+3)=1
=> 2n+1 và 2n+3 nguyên tố cùng nhau.
GỌI d LÀ UCLN CỦA (2n+1;2n+3)(d\(\in\)N*)
=>\(2n+1⋮d\)và\(2n+3⋮d\)
=>\(\left(2n+3-2n-1\right)⋮d\)
=>\(2⋮d\)
mà \(2n+1\)lẻ => d lẻ => d=1
=>\(2n+1\)và\(2n+3\)là 2 số nguyên tố cùng nhau