Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5
ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d
=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d
=> ( 6n + 5) - 3( 2n + 1) : hết cho d
=> 2 : hết cho d
=> d = 2
mà 2n + 1 ko : hết cho d
=> d = 1( dpcm)
a) Goi d la UCLN ( n ; n+1 ) b) Goi d la UCLN ( 3n+2 ;5n+3)
n+1 chia het cho d 3n+2 chia het cho d-->5(3n+2) chia het cho d
n chia het cho d 5n+3 chia het cho d-->3(5n+3) chia het cho d
-> n+1-n chia het cho d ->5(3n+2)-3(5n+3) chia het cho d
-> 1 chia het cho d -> 15n+10-15n-9 chia het cho d
Va n va n+1 la hai so ngto cung nhau - -> 1 chia het cho d
Vay 3n+2 va 5n+3 chia het cho d
c) Goi d la UCLN (2n+1;2n+3) d) Goi d la UCLN (2n+1;6n+5)
2n+1 chia het cho d 2n+1 chia het cho d-->3(2n+1) chiA het cho d
2n+3 chia het cho d--> 2n+1+2 chia het cho d 6n+5 chia het cho d
->2 chia het cho d ->6n+5-3(2n+1) chia het cho d
--> d \(\in\)U (2)-> d\(\in\) {1;2} -> 6n+5-6n-3 chia het cho d
d=2 loai vi 2n+1 khong chia het cho 2-> d=1 ->2 chia het cho d
Vay 2n+1 va 2n+3 la hai so ng to cung nhau --> d \(\in\)U (2)-> d\(\in\) {1;2}
d=2 loai vi 5n+3 k chia het cho 2-->d=1
vay 2n+1 va 6n+5 la2 so ng to cung nhAU
gọi (30n + 17, 12n + 7) = d
=> 30n + 17 chia hết cho d và 12n + 7 chia hết cho d
=> (30n + 17) - (12n + 7) chia hết cho d
=> 30 - 12 chia hết cho d
=> mà d lẻ và < 1
=> d = 1
vậy 30n + 17 và 12n + 7 là hai số nguyên tố cùng nhau
làm được bao nhiêu thì làm
ai làm được nhiêu nhất sẽ dduocj
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
câu a : xem lại đề
b:
gọi UCLN(2n+3;4n+8)=d
ta có :
2n+3 chia hết cho d => 2(2n+3) chia hết cho d =>4n+6 chia hết cho d
4n+8 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
=>2 chia hết cho d
=>d thuộc U(2)={1;2}
nếu d=2
htif 2n+3 ko chia hết cho 2
=>d=1
=>UCLN(..)=1
=>dpcm
a: Gọi d=ƯCLN(6n+5;2n+1)
=>6n+5-3(2n+1) chia hết cho d
=>2 chia hết cho d
mà 2n+1 lẻ
nên d=1
=>ĐPCM
b: Gọi d=ƯCLN(14n+3;21n+4)
=>42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
d: Gọi d=ƯCLN(3n+7;n+2)
=>3n+7 chia hết cho d và n+2 chia hết cho d
=>3n+7-3n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
a)
gọi n là UCLN(n+1;n+2)là d
ta có : n+1 chia hết cho d
n+2 chia hết cho d
=>(n+2)-(n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;n+2)=1
=>ntcn
=>dpcm
b)
gọi UCLN(2n+3 ;n+1) là d
ta có
2n+3 chia hết cho d
n+1 chia hết cho d=>2(n+1) chia hết cho d=>2n+2 chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+2;2n+3)=1
=>ntcn
=>dpcm
c)đợi chút
c/
gọi UCLN(6n+1;4n+1) là d
ta có :
6n+1 chia hết cho d=>4(6n+1) chia hết cho d => 24n+4 chia hết cho d
4n+1 chia hết cho d=>6(4n+1 ) chia hết cho d=>24n+6 chia hết cho d
=>(24n+6)-(24n+4) chia hết cho d
=>2 chia hết cho d
=>d thuộc {1;2}
nếu d=2 thì 4n+1 là số lẻ ko chia hết cho 2 => loại
=>d=1
=>UCLN(..)=1
=>ntcn
=>dpcm
a) Gọi d là UCLN ( n ; n+1 )
n+1 chia hết cho d
n chia hết cho d
-> n+1-n chia hết cho d
-> 1chia hết cho d
=>N và n+1 là 2 số nguyên tố cùng nhau
=>ĐPCM