2x(3y-2) +3y=-53
tìm các cặp số x y là nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(3y-2\right)+\left(3y-2\right)=-55\)
\(\left(3y-2\right)\left(2x+1\right)=-55=1.\left(-55\right)=\left(-1\right).55=\left(-5\right).11=5.\left(-11\right)\)
3y - 2 | 1 | -1 | -5 | 5 |
y | 1 | 1/3 (L) | -1 | 7/3 (L) |
2x + 1 | -55 | 55 | 11 | -11 |
x | -28 | 27 | 5 | -6 |
Vậy \(\left(y,x\right)=\left\{\left(1;-28\right),\left(-1;5\right)\right\}\)
\(2x^2-8x=13-3y^2\)
\(\Leftrightarrow2x^2-8x+8=21-3y^2\)
\(\Leftrightarrow2\left(x-4\right)^2=21-3y^2\) (1)
Do \(2\left(x-4\right)^2\ge0;\forall x\Rightarrow21-3y^2\ge0\)
\(\Rightarrow y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)
Mặt khác vế trái của (1) là chẵn, 21 là số lẻ \(\Rightarrow3y^2\) lẻ
\(\Rightarrow y^2\) lẻ \(\Rightarrow y^2=1\Rightarrow y=\pm1\)
Thế vào (1) \(\Rightarrow2\left(x-4\right)^2=18\Rightarrow\left(x-4\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(7;1\right);\left(7;-1\right);\left(1;1\right);\left(1;-1\right)\)
Lời giải:
$2x-xy+3y=9$
$\Rightarrow x(2-y)+3y=9$
$\Rightarrow x(2-y)-3(2-y)=3$
$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:
TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm)
TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương)
TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)
TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)
http://d.violet.vn//uploads/resources/601/2228122/preview.swf
2x(3y-2) + 3y = -53
=> 2x(3y - 2) + (3y - 2) = - 55
=> (2x +1)(3y - 2) = - 55
Ta có : - 55 = (-11).5 = (-5).11 = (-1).55 = (-55).1
Lập bảng xét 8 trường hợp
2x + 1
Vậy các cặp số (x;y) nguyên thỏa mãn là : (- 26 ; 1) ; (5 ; - 1) ; (4 ; - 3)