K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

chuyển vế rồi thêm bớt cậu sẽ có rồi tìm được x=1 y=1 z=4

\(\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(z-4\sqrt{z}+4\right)=0\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-2\right)^2=0\)

29 tháng 11 2017

x=3;y=2;z=1 

phân tích làm hàng đẳng thức bình phương

29 tháng 11 2017

làm tương trự như bài trên nhá

24 tháng 5 2016

Từ x+y+z=1 => 1-x = y+z

Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\), ta có :  \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-z\right)\left(1-y\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2.\left(1-y\right)\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)

\(\Rightarrow1+y=x+2y+z\ge4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)(ĐPCM)

25 tháng 1 2022

giả sử cả 3 số xyz đều nhỏ hơn 1 

=>x+y+z<1+1+1=3

ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3

từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1

15 tháng 11 2015

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+x\right)^2}{y+z+z+x+x+y}=\frac{x+y+x}{2}=1\)

Dấu ' =' xảy ra khi \(x=y=z=\frac{2}{3}\)