Tìm Max hoặc tìm Min
A=x^4-10x^3+25x^2+12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=-(x-7)^2-888<=-888
Dấu = xảy ra khi x=7
b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)
Dấu = xảy ra khi x=1/2 và y=5
c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)
Dấu = xảy ra khi x=-3 và y=5/2
Tìm min, max (nếu có) của các biểu thức sau :
a) 25x^2 - 10x + 4
b) -x^2 +2x
c) x^2 - 2x + y^2 - 4y +6
a) =(5x)^2-2*5x+1+3
=(5x-1)^2+3
suy ra min=3
b) = -(x^2-2x+1)-1
=-(x^2-1)^2-1
suy ra Max=-1
c)=(x^2-2x+1)+(y^2-4y+4)+1
=(x^2-1)^2+(y^2-2)^2+1
suy ra Min=1
# mk ko chắc lắm đâu
P - 2Q = x^4 + 10x^3 + 23x^2 - 10x - 24
= x^4 - x^3 + 11x^3 - 11x^2 + 34x^2 - 34x + 24x - 24
= (x - 1)(x^3 + 11x^2 + 34x +24)
= (x-1)(x^3+x^2+10x^2+10x+24x+24)
= (x-1)(x+1)(x^2 + 10x + 24)
=> P - 2Q có x = 1 và x= -1 là nghiệm của pt
P - 2Q = x^4 + 10x^3 + 23x^2 - 10x - 24
= x^4 - x^3 + 11x^3 - 11x^2 + 34x^2 - 34x + 24x - 24
= (x - 1)(x^3 + 11x^2 + 34x +24)
= (x-1)(x^3+x^2+10x^2+10x+24x+24)
= (x-1)(x+1)(x^2 + 10x + 24)
=> P - 2Q có x = 1 và x= -1 là nghiệm của pt
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
\(A=\left|x+3\right|+\left(y-1\right)^{2018}-4\)
Vì \(\left|x+3\right|\)và \(\left(y-1\right)^{2018}\)\(\ge0\forall x;y\)
\(\Rightarrow A\ge4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy.....
\(C=4-\left|3x-5\right|-\left|5y+8\right|\)
\(C=4-\left(\left|3x-5\right|+\left|5y+8\right|\right)\)
Lí luận như câu a) ta có :
\(C\le4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\5y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-8}{5}\end{cases}}\)
Vậy,...........
\(A=\left|x+3\right|+\left(y-1\right)^{2018}-4\)
Ta có: \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left(y-1\right)^{2018}\ge0\forall y\end{cases}}\)
\(\Rightarrow\left|x+3\right|+\left(y-1\right)^{2018}-4\ge-4\forall x;y\)
\(A=-4\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left(y-1\right)^{2018}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(A_{min}=-4\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
\(C=4-\left|3x-5\right|-\left|5y+8\right|\)
Ta có: \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|5y+8\right|\ge0\forall y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-\left|3x-5\right|\le0\forall x\\-\left|5y+8\right|\le0\forall y\end{cases}}\)
\(\Rightarrow4-\left|3x-5\right|-\left|5y+8\right|\le4\forall x;y\)
\(C=4\Leftrightarrow\hept{\begin{cases}-\left|3x-5\right|=0\\-\left|5y+8\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-5=0\\5y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{8}{5}\end{cases}}}\)
Vậy \(C_{max}=4\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{8}{5}\end{cases}}\)
Tham khảo nhé~
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
TA CO: A\(=x^4-10x^3+25x^2+12\)
\(=x^2\left(x^2-10x+25\right)+12\)
\(=x^2\left(x-5\right)^2+12\)
\(Do\)\(\left(x-5\right)^2\ge0\Rightarrow x^2\left(x-5\right)^2\ge0\)
\(\Rightarrow A\ge12\)
Dau''=''xay ra khi vµ chi khi:
\(\left(x-5\right)^2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
Vay MAX A=12 khi x=5
còn x bằng 0 nữa nhá