gia tri bieu thuc q={2mu0+2mu1+2mu2+2mu3}2mu0.2mu1.2mu2.2mu3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 21 + 22 + ... + 22010
A.2 = 22 + 23 +... + 22011
A.2 - A = ( 22 + 23+ ... + 22011)- ( 2 + 22 + ... + 22010 )
A = 22011 - 2
**** cong chua xuka
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
Giá trị \(\frac{3x-2}{4}\) không nhỏ hơn giá trị \(\frac{3x+3}{6}\) có nghĩa là:
\(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Leftrightarrow18x-12\ge12x+12\)
\(\Leftrightarrow6x\ge24\Leftrightarrow x\ge4\)
Vậy \(S=\left\{x|x\ge4\right\}\)
Giá trị biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị biểu thức \(\frac{3x+3}{6}\), tức là:
\(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Leftrightarrow\frac{3.\left(3x-2\right)}{3.4}\ge\frac{2.\left(3x+3\right)}{2.6}\)
\(\Leftrightarrow9x-6\ge6x-6\)
\(\Leftrightarrow9x-6x\ge6+6\)
\(\Leftrightarrow3x\ge12\)
\(\Leftrightarrow x\ge4\)
Vậy bất phương trình có nghiệm là
A = 2,25 x ( 112,5 -12,5 ) + 4,35
= 2,25 x 100 + 4,35
= 225 + 4,35
= 229,35
a) \(A=31-\sqrt{2x+7}\)
Ta có: \(-\sqrt{2x+7}\le0\forall x\)
\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)
Vậy MIN A = 31