K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Giá trị \(\frac{3x-2}{4}\) không nhỏ hơn giá trị \(\frac{3x+3}{6}\) có nghĩa là:

\(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Leftrightarrow18x-12\ge12x+12\)

\(\Leftrightarrow6x\ge24\Leftrightarrow x\ge4\)

Vậy \(S=\left\{x|x\ge4\right\}\)

8 tháng 5 2019

Giá trị biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị biểu thức \(\frac{3x+3}{6}\), tức là:

\(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Leftrightarrow\frac{3.\left(3x-2\right)}{3.4}\ge\frac{2.\left(3x+3\right)}{2.6}\)

\(\Leftrightarrow9x-6\ge6x-6\)

\(\Leftrightarrow9x-6x\ge6+6\)

\(\Leftrightarrow3x\ge12\)

\(\Leftrightarrow x\ge4\)

Vậy bất phương trình có nghiệm là

19 tháng 12 2016

ldigh;df

22 tháng 11 2017

giup minh voi cac ban

16 tháng 12 2015

\(25x^2+16y^2=50xy\)

\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)

\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)

Mặt khác, ta cũng có:  \(25x^2+16y^2=50xy\)

\(\Leftrightarrow\)  \(\left(5x-4y\right)^2=10xy\)

Do đó:

\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)

Vậy,  \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)

16 tháng 12 2015

1)

 \(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)

\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)

\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)