K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DV
0
DT
0
PN
16 tháng 12 2015
\(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)
Mặt khác, ta cũng có: \(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x-4y\right)^2=10xy\)
Do đó:
\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)
Vậy, \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)
16 tháng 12 2015
1)
\(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)
\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)
\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)
Giá trị \(\frac{3x-2}{4}\) không nhỏ hơn giá trị \(\frac{3x+3}{6}\) có nghĩa là:
\(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Leftrightarrow18x-12\ge12x+12\)
\(\Leftrightarrow6x\ge24\Leftrightarrow x\ge4\)
Vậy \(S=\left\{x|x\ge4\right\}\)
Giá trị biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị biểu thức \(\frac{3x+3}{6}\), tức là:
\(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Leftrightarrow\frac{3.\left(3x-2\right)}{3.4}\ge\frac{2.\left(3x+3\right)}{2.6}\)
\(\Leftrightarrow9x-6\ge6x-6\)
\(\Leftrightarrow9x-6x\ge6+6\)
\(\Leftrightarrow3x\ge12\)
\(\Leftrightarrow x\ge4\)
Vậy bất phương trình có nghiệm là