Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 21 + 22 + ... + 22010
A.2 = 22 + 23 +... + 22011
A.2 - A = ( 22 + 23+ ... + 22011)- ( 2 + 22 + ... + 22010 )
A = 22011 - 2
**** cong chua xuka
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Để A dương
<=>2x-1>0
<=>2x>1
<=>x>1/2
b,Để B âm
<=>8-2x<0
<=>2x>8
<=>x>4
c,Để C không âm
<=>\(2\left(x+3\right)\ge0\)
<=>\(x+3\ge0\)
<=>\(x\ge-3\)
d,Để D không dương
<=>\(7\left(2-x\right)\le0\)
<=>\(2-x\le0\)
<=>\(x\ge2\)
Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại.
\(A=2^{100}-2^{99}-...-2^2-2\)
\(2A=2^{101}-2^{100}-...-2^3-2^2\)
\(2A-A=2^{101}-2^{100}-...-2^3-2^2-2^{100}+2^{99}+...2^2+2\)
\(A=2^{101}-\left(2^{100}-2^{100}+2^{99}-2^{99}+...+2^2-2^2+-2\right)\)
\(A=2^{101}+2\)