K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2015

2- 

Ta có:

a+5b chia hết cho 7

=>10.(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7

=>49b chia hết cho 7 (đúng)

Vì vậy 10a+b chia hết cho 7

CM điều ngược lại đúng

Ta có:

10a+b chia hết cho 7

=>5.(10a+b) chia hết cho 7

=>50a+5b chia hết cho 7

Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7

=>49a chia hết cho 7 (đúng)

Vậy điều ngược lại đúng

 

23 tháng 5 2015

Vì a và 5a có tổng các chữ số như nhau 

=> a và 5a có cùng số dư khi chia cho 9 

=> 5a - a chia hết cho 9

=> 4a chia hết cho 9

Mà ƯCLN(4,9) = 1

=> a chia hết cho 9 (đpcm)

13 tháng 3 2016

Quy tắc đoán một số tự nhiên chia hết cho 11 là hiệu của tổng các số ở vị trí số lẻ và tổng các số ở vị trí số chẵn của nó có thể chia hết cho 11.

Công thức tổng quát _____

A  =  a b c d    chia hết cho 11 khi [(a + c) –  (b + d) ] chia hết 11

Ví dụ tổng các số ở vị trí số lẻ là 9 + 8 + 6 = 23, tổng các số ở vị trí số chẵn là 2 + 8 + 2 = 12, hiệu của hai tổng này bằng 11, có thể chia hết cho 11 cho nên số 268829 có thể chia hết cho 11.

Ví dụ khác: 1257643, vì (3 + 6 + 5 + 1) – (2 + 7 + 4) = 2 cho nên số 1257643 không thể chia hết cho 11.

Cách chứng minh vẫn giống với quy tắc trong 3 và 4: dùng ký hiệu trong (3).

A = = [(10 + 1) a1 + (102 -1)a2 + (103 + 1)a3 + (104 – 1)a4 +..] + (a0 + a2 +..) - (a1 + a3 +...)

Số trong hoặc đơn phía trước là bội số của 11, do vậy muốn phán đoán xem a có phải là bội số của 11 không thì chỉ cần xem số trong hoặc đơn phía sau có phải là bội số của 11 hay không.

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

13 tháng 7 2016

câu thứ 2

 a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17 
10a-50b=10a+b-51b 
51b chia hết cho 17 nên 10a+b chia hết cho 17

51a : 17

=> 51a - a + 5b : 17

=> 50a + 5b : 17

=> 5 ( 10a + b ) : 17

=> 10a + b : 17

4 tháng 1 2016

bạn nhân 2 về rồi xem vế nào lớn hơn rùi trừ đi

4 tháng 1 2016

nhân 10a+2b với 1 số và 18a+5b với 1 số sao cho khi trừ 2 số cho nhau xuất hiên 1 số có 19a hoặc 19b thì luôn chia hết cho 19

10 tháng 12 2021
10 bạn đầu tiên trả lời tick .Phải làm đúng đó
18 tháng 11

a)                                  Giải

    Ta có:

a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7

    Vì 49 ⋮ 7 ⇒49b ⋮ 7

⇒10a + (50b - 49b) ⋮ 7

⇒10a + b ⋮ 7

   Vậy 10a + b ⋮ 7

 

19 tháng 9 2015

=> Nếu số đó chia 9 dư k

=> Tổng các chữ số chia 9 dư k

Vậy hiệu của chúng có số dư khi chia cho 9 là: k - k = 0 

Vậy chia hết cho 9 

19 tháng 1 2017
  1. mik vẫn chưa hiểu cách giải lắm