Giúp mình bài này với
(a + b)2 = a2 + 2ab + b2 → a2 + b2 = (a + b)2 − 2ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(a^4+b^4\ge2a^2b^2\)
\(\Leftrightarrow a^4-2a^2b^2+b^4>=0\)
hay \(\left(a^2-b^2\right)^2\ge0\)(luôn đúng)
d: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2
(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
(a+3)^3=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3
=a^3+3a^2b+3ab^2+b^3
a, a(b+c)−b(a−c)a(b+c)−b(a−c)
=ab+ac−(ab−bc)=ab+ac−(ab−bc)
=ab+ac−ab+bc=ab+ac−ab+bc
=ac+bc=ac+bc
=(a+b)c=(a+b)c
b,(a+b)(a−b)(a+b)(a−b)
=(aa+ab)−(ab+bb)=(aa+ab)−(ab+bb)
=aa+ab−ab−bb
Dựng hình vuông ABCD có cạnh bằng a
Trên cạnh AB lấy điểm E sao cho BE = b
Từ E dựng đường thẳng song song BC cắt CD tại G
Ta có: CG = b, CE = ( a – b ), GD = ( a – b )
Trên cạnh AD lấy điểm K sao cho AK = b
Từ K kẻ đường thẳng song song với AB cắt BC tại H và cắt EG tại F
Ta có: KD = ( a – b ), BH = b
Hình vuông ABCD có diện tích bằng a 2
Hình vuông DKFG có diện tích bằng a - b 2
Hình chữ nhật AEFK có diện tích bằng ( a – b ) b
Hình vuông EBHF có diện tích bằng b 2
Hình chữ nhật HCGF có diện tích bằng ( a – b ).b
S A B C D = S D K F G + S A E F K = S E B H F + S H C G F
nên a - b 2 + a - b b + a - b b + b 2 = a 2
⇒ a - b 2 = a 2 - 2 a b + b 2
Thay a = -2, b = 4 vào biểu thức ta được:
( − 2 ) 2 + 2. ( − 2 ) .4 + 4 2 − 1 = 4 + ( − 16 ) + 16 − 1 = 3
`a^2 + 2ab+b^2-1`
`= (a+b)^2-1`
`=(a+b)^2 - 1^2`
`=(a+b-1)(a+b+1)`
`= (-2+4-1)(-2+4+1)`
`= 3`
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{a\left(x-y\right)+b\left(x-y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{\left(x-y\right)\left(a+b\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{a+b}\)
\(=\dfrac{a+b-c}{\left(a+b\right)^2-c^2}.\dfrac{\left(a+b\right)^2+c\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{a+b-c}{\left(a+b-c\right)\left(a+b+c\right)}.\dfrac{\left(a+b\right)\left(a+b+c\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{1}{a-b}\)
\(c,\dfrac{x^3+1}{x^2+2x+1}.\dfrac{x^2-1}{2x^2-2x+2}\)
\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2-x+1\right)}\) \(=\dfrac{x-1}{2}\) \(d,\dfrac{x^8-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4\right)^2-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x+1}.\dfrac{1}{x^2+1}\) \(=\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\) \(=x-1\) \(e,\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}.\dfrac{y-x}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x\left(x-y\right)}.\dfrac{-\left(x-y\right)}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x}.\dfrac{-1}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{-3x-y}{x\left(x+y\right)}\) \(=\dfrac{x\left(x-y\right)+y\left(3x+y\right)}{xy\left(x+y\right)}\) \(=\dfrac{x^2-xy+3xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{x^2+2xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}=\dfrac{x+y}{xy}\)tìm giá trị của m để pt 2x-m=1-x nhận giá trị x=-2 là nghiệm
giải hộ e với :)
\(\left(a+b\right)^3=\left(a+b\right)^2\cdot\left(a+b\right)\)
\(=\left(a^2+2ab+b^2\right)\left(a+b\right)\)
\(=a^3+a^2b+2a^2b+2ab^2+ab^2+b^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
Bài 3 :
\(a)\left|3x-2\right|=x\)
\(\Rightarrow\orbr{\begin{cases}3x-2=x\\3x-2=-x\end{cases}\Rightarrow\orbr{\begin{cases}3x-x=2\\3x+x=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=2\\4x=2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
vậy \(x=1;x=\frac{1}{2}\)
Bài 10
\(a)\)cách 1: cm vế trái bằng vế phải
\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\)
\(=a^2-ab-ab+b^2\)
\(=a^2-2ab+b^2\)
cách 2 : cm vế phải = vế trái
\(a^2-2ab+b^2=a^2-ab-ab+b^2=\left(a-b\right)\left(a-b\right)=\left(a-b\right)^2\)
\(b)A=\left(5x^4-3y^3\right)^2\)
\(=\left(5x^4\right)^2-2\times5x^4\times3y^3+\left(3y^3\right)^2\)
\(=25x^8-30x^4y^3+9y^6\)
3.a.
ta có
\(|3x-2|=x\\\Rightarrow\orbr{\begin{cases}3x-2=x\\-3x+2=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x-x=2\\-3x-x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=2\\-4x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
10a:
ta có
\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\)
rồi nhân ra là dc
10b:
ta có
\(\left(5x4-3y3\right)^2\)
\(=\left(20x-9y\right)^2\)
\(=\left(400x^2-2.20x.9y+81y^2\right)\)
rồi rút gọn là dc bạn ạ
ta có: (a2+b2)=a2+2ab+b2
biến đổi vế phải
(a+b)2-2ab=a2+b2+2ab-2ab=a2+b2=vế trái
biến đổi vế phải:
(a2+b2)-2ab=a2+b2+2ab-2ab=a2+b2=vế trái