Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng diện tích để chứng tỏ (a+b) 2 = a2 + 2ab + b2
dùng diện tích để chứng tỏ (a-b)2 = a2 - 2ab + b2
Bài 2.2 - Bài tập bổ sung Sách bài tập - trang 159 - Toán lớp 8 | Học trực tuyến
vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)
=>(a+b+c)(bc+ac+ab) - abc = 0
=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0
=> a2(b+c) + (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0
=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0
Nếu b+c = 0 => a = 2008
nếu a+ b = 0 => c = 2008
Nếu a+c = 0 => b = 2008
Vậy....
Ta có:
\(a^2>b^2\Leftrightarrow a>b\)
Mà \(a^2>\left(b+1\right)^2\Leftrightarrow a>b+1\)
Vậy điều kiện là : a > b+1
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(B=\left(\dfrac{2x+1}{x-1}+\dfrac{8}{x^2-1}-\dfrac{x-1}{x+1}\right)\cdot\dfrac{x^2-1}{5}\)
\(=\left(\dfrac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{8}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{2x^2+2x+x+1+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{2x^2+3x+9-x^2+2x-1}{5}\)
\(=\dfrac{x^2+5x+8}{5}\)
Ta có: \(x^2+5x+8\)
\(=x^2+2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)
Ta có: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\forall x\)
\(\Leftrightarrow x^2+5x+8>0\forall x\)
\(\Leftrightarrow\dfrac{x^2+5x+8}{5}>0\forall x\) thỏa mãn ĐKXĐ(đpcm)
Dựng hình vuông ABCD có cạnh bằng a
Trên cạnh AB lấy điểm E sao cho BE = b
Từ E dựng đường thẳng song song BC cắt CD tại G
Ta có: CG = b, CE = ( a – b ), GD = ( a – b )
Trên cạnh AD lấy điểm K sao cho AK = b
Từ K kẻ đường thẳng song song với AB cắt BC tại H và cắt EG tại F
Ta có: KD = ( a – b ), BH = b
Hình vuông ABCD có diện tích bằng a 2
Hình vuông DKFG có diện tích bằng a - b 2
Hình chữ nhật AEFK có diện tích bằng ( a – b ) b
Hình vuông EBHF có diện tích bằng b 2
Hình chữ nhật HCGF có diện tích bằng ( a – b ).b
S A B C D = S D K F G + S A E F K = S E B H F + S H C G F
nên a - b 2 + a - b b + a - b b + b 2 = a 2
⇒ a - b 2 = a 2 - 2 a b + b 2