1+1=
giups vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(F=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2010}{2009}.\frac{2011}{2010}\\ =\frac{3.4.5...2010.2011}{2.3.4...2009.2010}=\frac{2011}{2}\)
Theo bài ra , ta có :
\(\left(x+1\right)=\left(x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\Rightarrow x=-1\\x=0\end{cases}}\)
Vậy \(x=0;x=-1\)
5^(x-2)(x+3) = 1 <=> 5^(x-2)(x+3) = 5x^0
<=> (x-2)(x+3) = 0
<=> x=2 hoac x=-3
Vậy x\(\in\left\{2;-3\right\}\)
\(\frac{1}{9}.\frac{2}{145}-\frac{13}{3}:\frac{1}{145}+\frac{2}{145}=\frac{2}{145}\left(\frac{1}{9}+1\right)-\frac{13}{3}:\frac{1}{145}=\frac{2}{145}.\frac{10}{9}-\frac{1885}{3}=\frac{4}{216}-\frac{1885}{3}\)
\(=-\frac{33929}{54}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(2\left(x-\frac{1}{2}\right)-5\left(\frac{3}{10}-1\right)=7\)
\(\Rightarrow\left(2x-1\right)-\left(\frac{3}{2}-5\right)=7\)
\(\Rightarrow\left(2x-1\right)-\frac{-7}{2}=7\)
\(\Rightarrow\left(2x-1\right)=7+\frac{-7}{2}=\frac{7}{2}\)
\(\Rightarrow2x=\frac{7}{2}+1\)
\(\Rightarrow x=\frac{9}{2}:2\)
\(\Rightarrow x=\frac{9}{4}\)
2(x-1/2)-5(3/10-1)=7
2x-1-3/2+5=7
2x=7+1+3/2-5
2x=9/2
x=9/4
Vậy x=9/4.
Đặt A = 1/3 + 1/32 + 1/33 + ... + 1/32005
3A = 1 + 1/3 + 1/32 + ... + 1/32004
3A - A = (1 + 1/3 + 1/32 + ... + 1/32004) - (1/3 + 1/32 + 1/33 + ... + 1/32005)
2A = 1 - 1/32005
A = 1 - 1/32005 / 2
Ủng hộ mk nha ^_-
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3A-A=2A=1-\frac{1}{3^{2005}}=\frac{3^{2005}-1}{3^{2005}}\)
\(\Rightarrow A=\frac{3^{2005}-1}{2.3^{2005}}\)
a) A = 1/(1.2) + 1/(2.3) + ... + 1/[n(n + 1)]
= 1 - 1/2 + 1/2 - 1/3 + 1/n - 1/(n + 1)
= 1 - 1/(n + 1)
b) Do n ∈ ℕ
⇒ n + 1 > 0
⇒ 1/(n + 1) > 0
⇒ 1 - 1/(n + 1) < 1
Vậy A < 1
Tl
1 + 1 = 2
HT
1 + 1 = 2
Học tốt
Xin k