Tìm x,y nguyên:
a) xy+ 3x+ 4y= 5
b) 2xy+ x- 2y= 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a/
\(x\left(3-y\right)+4y=15\Rightarrow x=\frac{15-4y}{3-y}=\frac{12-4y+3}{3-y}=\frac{4\left(3-y\right)+3}{3-y}=4+\frac{3}{3-y}\)(*)
x nguyên khi 3 chia hết cho 3-y => 3-y={-1; -3; 1; 3} => y={4; 6; 2; 0} Thay các giá trị của y vào (*)
=> x={1; 3; 7; 5}
b/
\(\Rightarrow x\left(x-2y\right)+\left(x-2y\right)=\left(x-2y\right)\left(x+1\right)=11\)
Ta nhận thấy nếu x chẵn thì x-2y chẵn => tích chẵn
Nếu x lẻ thì x+1 chẵn => tích chẵn
Đề bài ra tích là 11 lẻ
=>KL: không có giá trị nguyên nào của x; y thỏa mãn đề bài
a) Ta có: \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
b) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
d) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
f) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(xy+3x+4y=x\left(y+3\right)+4y=5\Leftrightarrow x\left(y+3\right)+4y+12=17\Leftrightarrow\left(x+4\right)\left(y+3\right)=17\)
\(2xy+x-2y-1=3\Leftrightarrow x\left(2y+1\right)-\left(2y+1\right)=3\Leftrightarrow\left(x-1\right)\left(2y+1\right)=3\)