K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

A B C D E H

a

Do AD=DB;AE=EC mà AB=AC nên AD=AE suy ra tam giác ADE cân tại A.

\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)

Tam giác ABC cân tại A nên \(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)

Khi đó \(\widehat{ADE}=\widehat{B}\left(=\frac{180^0-\widehat{A}}{2}\right)\Rightarrow ED//BC\left(1\right)\) ( Thực ra áp dụng đường trung bình sẽ nhanh hơn nhưng mik nghĩ bn chưa học đến )

Xét \(\Delta\)BDC và \(\Delta\)CEB có:BC chung;\(\widehat{B}=\widehat{C}\);BD=EC \(\Rightarrow\Delta BDC=\Delta CEB\left(c.g.c\right)\Rightarrow CD=BE\left(2\right)\)

Từ ( 1 );( 2 ) suy ra tứ giác BDEC là hình thang cân.

b

Mik chưa nghĩ ra

13 tháng 9 2019

A B C D E H F

a)DE là đường trung bình nên DE // BC \(\rightarrow\) tứ giác BDEC là hình thang (1)

Từ đề bài có ngay ^ABC = ^ACB (2). Từ (1) và (2) suy ra tứ giác BDEC là hình thang.

b) Hạ DF \(\perp\)BC có ngay DE = FH = \(\frac{1}{2}BC\) (3)

Mà \(BC=BF+FH+HC=\frac{1}{2}BC+BF+HC\)

\(\Rightarrow BF+HC=\frac{1}{2}BC\)(4). Lại có \(\Delta\)DFB = \(\Delta\)EHC (cạnh huyền - góc nhọn)

Do đó BF = HC. Kết hợp (4) suy ra \(2BF=\frac{1}{2}BC\Rightarrow BF=\frac{1}{4}BC\) (5)

Từ (1) và (5) ta có: \(BF+FH=\frac{1}{4}BC+\frac{1}{2}BC=\frac{3}{4}BC\)

Hay \(BH=\frac{3}{4}BC\)

P/s: Làm xàm nên ko chắc nhé!

b: Xét ΔABC có 

F là trung điểm của AB

E là trung điểm của AC
Do đó: FE là đường trung bình của ΔABC

Suy ra: FE//BD và FE=BD

hay BDEF là hình bình hành

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét tứ giác AHCE có

D là trung điểm chung của AC và HE

\(\widehat{AHC}=90^0\)

Do đó: AHCE là hình chữ nhật

=>EC//AH

c: Xét ΔAHC có

CF,HD là trung tuyến

CF cắt HD tại Q

=>Q là trọng tâm

=>HQ=2/3HD=2/3*1/2*HE=1/3HE

=>HE=3HQ

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

ΔMDB vuông tại D có DI là trung tuyến

nên DI=MI=BI

ΔMEC vuông tại E có EK là trung tuyến

nên KC=KM=KE

Xét ΔABC có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

=>E là trung điểm của AC

Xét ΔABC có D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình 

=>DE//BC và DE=BC/2

KI=KM+MI

=1/2(MC+MB)

=1/2BC

=DE

Xét tứ giác DIKE có

DE//KI

DE=KI

=>DIKE là hình bình hành

b: DIKE là hình chữ nhật

=>góc DIK=90 độ

=>DI vuông góc MB

Xét ΔDMB có

DI vừa là đường cao, vừa là đường trung tuyến

=>ΔDMB cân tại D

mà ΔDMB vuông cân tại D

nên góc B=45 độ

14 tháng 11 2023

sai câu a DIKE LÀ HBH ??

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

31 tháng 12 2021

a: Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

hay BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

loading...  loading...  loading...  

18 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE
b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//MC và DE=MC

Xét tứ giác DMCE có

DE//MC

DE=MC

Do đó: DMCE là hình bình hành

c: ΔHAC vuông tại H có HE là trung tuyến

nên \(HE=\dfrac{1}{2}AC\)

mà \(MD=\dfrac{1}{2}AC\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

nên DHME là hình thang

mà HE=MD

nên DHME là hình thang cân

ΔHAB vuông tại H

mà HD là trung tuyến

nên HD=AD

EA=EH

DA=DH

Do đó: ED là đường trung trực của AH

Bài 3:Cho tam giác ABC cân tại A.Gọi D,E,F lần lượt là trung điểm của AB,AC,BC.Gọi điểm I đối xứng với F qua E a.Chứng minh tứ giác BDEC là hình thang cân b.Chứng minh tứ giác AFCI là hình chữ nhật c.Tam giác cân ABC cần có thêm điều kiện gì để hình chữ nhật AFCI là hình vuông? Bài 4:Cho △ABC vuông tại A,trung tuyến AM.Gọi D là trung điểm của AB,E là điểm đối xứng với M qua D a.Chứng minh tứ giác AEBM là hình...
Đọc tiếp

Bài 3:Cho tam giác ABC cân tại A.Gọi D,E,F lần lượt là trung điểm của AB,AC,BC.Gọi điểm I đối xứng với F qua E

a.Chứng minh tứ giác BDEC là hình thang cân

b.Chứng minh tứ giác AFCI là hình chữ nhật

c.Tam giác cân ABC cần có thêm điều kiện gì để hình chữ nhật AFCI là hình vuông?

Bài 4:Cho △ABC vuông tại A,trung tuyến AM.Gọi D là trung điểm của AB,E là điểm đối xứng với M qua D

a.Chứng minh tứ giác AEBM là hình thoi

b.Chứng minh tứ giác AEMC là hình bình hành

c.Tinh diện tích của tam giác ABC biết AB=6cm,AC=4cm

Bài 5:Cho △ABC vuông tại A.Gọi D,E,F lần lượt là trung điểm của các cạnh AB,BC,AC.Gọi điểm K đối xứng với E qua AC

a.Các tứ giác ADEF và AKCE là hình gì?Vì sao?

b.Cho AB=4cm và AC=5cm.Tính diện tích tam giác ABC?

Bài 6:Cho △ABC vuông tại A.Gọi M,I,N lần lượt là trung điểm các cạnh AB,BC,AC.Lấy điểm E đối xứng với I qua M

a.Các tứ giác AMIN và AEBI là hình gì?Vì sao?

b.Cho AB=6cm,AC=8cm.Tính diện tích tứ giác AMIN?

HELP ME khocroikhocroikhocroi

0