Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH=6(cm)
b: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
=>ADHE là tứ giác nội tiếp
=>A,D,H,E cùng nằm trên 1 đường tròn
c: \(\widehat{CAK}+\widehat{BAK}=90^0\)
\(\widehat{CKA}+\widehat{HAK}=90^0\)
mà \(\widehat{BAK}=\widehat{HAK}\)
nên \(\widehat{CAK}=\widehat{CKA}\)
=>ΔCAK cân tại C
ΔCAK cân tại C
mà CI là đường trung tuyến
nên CI là đường cao
=>CI vuông góc AK
a) Do ΔABC đều => AB = BC = AC = a; \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
Xét ΔBDM vuông tại D có: MD = MB.sin\(\widehat{B}\) = MB.sin60o = MB.\(\dfrac{\sqrt{3}}{2}\)
BD = MB.cos\(\widehat{B}\) = MB.cos60o = \(\dfrac{1}{2}\).MB
ΔCEM vuông tại E có: ME = MC.sin\(\widehat{C}\) = MC.sin60o = MC.\(\dfrac{\sqrt{3}}{2}\)
EC = MC.cos\(\widehat{C}\) = MC.cos60o = \(\dfrac{1}{2}\).MC
=> Chu vi tứ giác ADME là:
AD + AE + MD + ME = (AB - BD) + (AC - CE) + MB.\(\dfrac{\sqrt{3}}{2}\) + MC.\(\dfrac{\sqrt{3}}{2}\)
= AB + AC - (BD + CE) + \(\dfrac{\sqrt{3}}{2}\)(MB + MC)
= AB + AC - \(\dfrac{1}{2}\).(MB + MC) + \(\dfrac{\sqrt{3}}{2}\)(MB + MC)
= AB + AC + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).BC
= a + a + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).a = \(\dfrac{3+\sqrt{3}}{2}\).a
Do a không đổi => chu vi tứ giác ADME không đổi
b) Xét ΔBMD vuông tại D => \(\widehat{M_1}=90^o-\widehat{B}=90^o-60^o=30^o\)
ΔCME vuông tại E => \(\widehat{M_2}=90^o-\widehat{C}=90^o-60^o=30^o\) =>
Tứ giác BDEC nội tiếp đường tròn ⇔ \(\widehat{E_2}=\widehat{B}=60^o\)
Mà \(\widehat{B}=\widehat{C}=60^o\) (cmt) => \(\widehat{E_2}=\widehat{C}\). Mà 2 góc ở vị trí đồng vị => DE // BC
=> \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{M_1}=30^o\\\widehat{E_1}=\widehat{M_2}=30^o\end{matrix}\right.\)(hai góc so le trong)
=> \(\widehat{D_1}=\widehat{E_1}\left(=30^o\right)\)
=> ΔMDE cân tại M => MD = ME
=> \(\dfrac{\sqrt{3}}{2}\).MB = \(\dfrac{\sqrt{3}}{2}\).MC => MB = MC => M là trung điểm của BC
Vậy để tứ giác BDEC nội tiếp thì M là trung điểm của BC
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
XétΔABC vuông tại A có \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
=>\(\widehat{B}\simeq53^0\)
b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
\(HB=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)
HC=BC-HB=3,2(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔHCA vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
d: Xét tứgiác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)
nên AMHN là tứ giác nội tiếp
Xét (AH/2) có
\(\widehat{ANM}\) là góc nội tiếp chắn cung AM
\(\widehat{AHM}\) là góc nội tiếp chắn cung AM
DO đó: \(\widehat{ANM}=\widehat{AHM}=\widehat{B}\)
Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến
nên AE=CE
=>\(\widehat{EAC}=\widehat{C}\)
\(\widehat{ANM}+\widehat{EAC}=\widehat{B}+\widehat{C}=90^0\)
=>AE\(\perp\)MN
tự vẽ hình nha bn
a. Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)(Theo định lí Pytago, tam giác ABC vuông tại A)
b. Ta có: \(\frac{BH}{CH}=\frac{3}{4}\)
\(\Leftrightarrow\frac{BH+CH}{CH}=\frac{3}{4}+1\)
\(\Leftrightarrow\frac{BC}{CH}=\frac{7}{4}\)\(\Leftrightarrow\frac{5}{CH}=\frac{7}{4}\)\(\Leftrightarrow CH=\frac{5.4}{7}=\frac{20}{7}\)
\(\Rightarrow BH=5-\frac{20}{7}=\frac{15}{7}\)