K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH=6(cm)

b: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=180^0\)

=>ADHE là tứ giác nội tiếp

=>A,D,H,E cùng nằm trên 1 đường tròn

c: \(\widehat{CAK}+\widehat{BAK}=90^0\)

\(\widehat{CKA}+\widehat{HAK}=90^0\)

mà \(\widehat{BAK}=\widehat{HAK}\)

nên \(\widehat{CAK}=\widehat{CKA}\)

=>ΔCAK cân tại C

ΔCAK cân tại C

mà CI là đường trung tuyến

nên CI là đường cao

=>CI vuông góc AK

13 tháng 10 2023

 bạn vẽ hình có đc k ah ?

27 tháng 6 2021

A B C M D E 1 1 1 1 2

a) Do ΔABC đều => AB = BC = AC = a; \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

Xét ΔBDM vuông tại D có: MD = MB.sin\(\widehat{B}\) = MB.sin60o = MB.\(\dfrac{\sqrt{3}}{2}\)

                                           BD = MB.cos\(\widehat{B}\) = MB.cos60o = \(\dfrac{1}{2}\).MB

ΔCEM vuông tại E có: ME = MC.sin\(\widehat{C}\) = MC.sin60o = MC.\(\dfrac{\sqrt{3}}{2}\)

                                     EC = MC.cos\(\widehat{C}\) = MC.cos60o = \(\dfrac{1}{2}\).MC

=> Chu vi tứ giác ADME là:

AD + AE + MD + ME = (AB - BD) + (AC - CE) + MB.\(\dfrac{\sqrt{3}}{2}\) + MC.\(\dfrac{\sqrt{3}}{2}\)

                                  = AB + AC - (BD + CE) + \(\dfrac{\sqrt{3}}{2}\)(MB + MC)

                                  = AB + AC - \(\dfrac{1}{2}\).(MB + MC) +   \(\dfrac{\sqrt{3}}{2}\)(MB + MC)

                                   = AB + AC + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).BC

                                   = a + a + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).a = \(\dfrac{3+\sqrt{3}}{2}\).a

Do a không đổi => chu vi tứ giác ADME không đổi 

b) Xét ΔBMD vuông tại D => \(\widehat{M_1}=90^o-\widehat{B}=90^o-60^o=30^o\)

ΔCME vuông tại E => \(\widehat{M_2}=90^o-\widehat{C}=90^o-60^o=30^o\) => 

Tứ giác BDEC nội tiếp đường tròn ⇔ \(\widehat{E_2}=\widehat{B}=60^o\)

Mà \(\widehat{B}=\widehat{C}=60^o\) (cmt) => \(\widehat{E_2}=\widehat{C}\). Mà 2 góc ở vị trí đồng vị => DE // BC

=> \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{M_1}=30^o\\\widehat{E_1}=\widehat{M_2}=30^o\end{matrix}\right.\)(hai góc so le trong)

=> \(\widehat{D_1}=\widehat{E_1}\left(=30^o\right)\)

=> ΔMDE cân tại M => MD = ME

=> \(\dfrac{\sqrt{3}}{2}\).MB = \(\dfrac{\sqrt{3}}{2}\).MC => MB = MC => M là trung điểm của BC

Vậy để tứ giác BDEC nội tiếp thì M là trung điểm của BC

 

22 tháng 9 2017

Tương tự, HS tự làm

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

XétΔABC vuông tại A có \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}\simeq53^0\)

b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)

\(HB=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)

HC=BC-HB=3,2(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔHCA vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

d: Xét tứgiác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

Xét (AH/2) có

\(\widehat{ANM}\) là góc nội tiếp chắn cung AM

\(\widehat{AHM}\) là góc nội tiếp chắn cung AM

DO đó: \(\widehat{ANM}=\widehat{AHM}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AE là đường trung tuyến

nên AE=CE
=>\(\widehat{EAC}=\widehat{C}\)

\(\widehat{ANM}+\widehat{EAC}=\widehat{B}+\widehat{C}=90^0\)

=>AE\(\perp\)MN

2 tháng 9 2017

tự vẽ hình nha bn

a. Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)(Theo định lí Pytago, tam giác ABC vuông tại A)

b. Ta có: \(\frac{BH}{CH}=\frac{3}{4}\)

\(\Leftrightarrow\frac{BH+CH}{CH}=\frac{3}{4}+1\)

\(\Leftrightarrow\frac{BC}{CH}=\frac{7}{4}\)\(\Leftrightarrow\frac{5}{CH}=\frac{7}{4}\)\(\Leftrightarrow CH=\frac{5.4}{7}=\frac{20}{7}\)

\(\Rightarrow BH=5-\frac{20}{7}=\frac{15}{7}\)

3 tháng 9 2017

c,d bạn giải giùm mình được không