Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{ABH}=\widehat{ACH}\)
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAE}=\widehat{NAE}\)
Xét ΔAME và ΔANE có
AM=AN(gt)
\(\widehat{MAE}=\widehat{NAE}\)(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)
mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)
nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
a)bn c/m hbh có 1 góc vuông là hcn
b) c/m EACH là hbh (EA//HC và EA=HC)
mà N là trung điểm AH nên N cx là trung điểm EC
c)ta có NM là đường trung bình tam giác BHA nên NM=HC/2(1)
mà BH=HC (AH là đc nên cx là đtt trong tam giác cân)
=> BH=BC/2(2)
từ (1) và (2)=>NM=BC/4=12/4=3cm
ta có NM vuông góc AH (NM//BC, AH vuông góc BC)
SAHM=1/2 x 8x3=12 cm2
d)ta có QC=QK,BH=HC
=>QH//BK
lại có KQ=QC,KI=IH
=>QI là đtb t.g KHC
=>QI//HC
mà HC vuoong góc HF
nên QI cx vuông góc HF
tam giác HQF có đường cao QI,HK cùng cắt tại I
nên I là trực tâm
=>IF vuông góc HQ
mà HQ//BK
=>IF vuông góc BK
1: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: DE//BC
hay DM//BH
2: Xét ΔABH có
D là trung điểm của AB
DM//BH
Do đó: M là trung điểm của AH
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét tứ giác AHCE có
D là trung điểm chung của AC và HE
\(\widehat{AHC}=90^0\)
Do đó: AHCE là hình chữ nhật
=>EC//AH
c: Xét ΔAHC có
CF,HD là trung tuyến
CF cắt HD tại Q
=>Q là trọng tâm
=>HQ=2/3HD=2/3*1/2*HE=1/3HE
=>HE=3HQ