Tính tổng: S= 1+2+5+14+... + (3n-1+1)/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (3^0/2 + 1/2) + (3^1/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3^(n-1)/2 + 1/2
S = n.(1/2) + (1/2)[3^0 + 3^1 + 3² +...+ 3^(n-1)]
S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4
mình lớp 5 mong bạn thông cảm và
\(S=1+2+5+14+....+\frac{3^{x-1}+1}{2}\)
\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+.....+\frac{3^{x-1}+1}{2}\)
\(=\frac{\left(3^0+1\right)+\left(3^1+1\right)+\left(3^2+1\right)+.....+\left(3^{x-1}+1\right)}{2}\)
\(=\frac{\left(1+3+3^2+.....+3^{x-1}\right)+x}{2}\)
Đặt \(A=1+3+3^2+....+3^{x-1}\)
\(3A-A=\left(3+3^2+....+3^x\right)-\left(1+3+....+3^{x-1}\right)\)
\(2A=3^x-1\Rightarrow A=\frac{3^x-1}{2}\)
\(\Rightarrow S=\frac{\frac{3^x-1}{2}+x}{2}\)
S = (30/2 + 1/2) + (31/2 + 1/2) + (32/2 + 1/2) + (33/2 + 1/2) +..+ 3n-1/2 + 1/2
S = n.(1/2) + (1/2)[3^0 + 3^1 + 32 +...+ 3n-1]
S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4
S = (30/2 + 1/2) + (31/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3(n-1)/2 + 1/2
S = n.(1/2) + (1/2)[30 + 31 + 3² +...+ 3(n-1)]
S = n/2 + (3n - 1)/4 = (3n + 2n - 1)/4
\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
\(S=\frac{\left(3^0+3^1+3^2+...+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\)có n c/s 1
\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}\)
\(=3^n-1+\frac{n}{2}\)
...\(3^0+3^1+3^3+...+3^{n-1}\)bạn tính nha
Câu hỏi của WINNER - Toán lớp 7 - Học toán với OnlineMath
๖ۣۜƝƘ☆ŤŔầŃ➻❥VăŃ➻❥ŃÁM❖︵copy ở đây
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n,i,t=0;
cin>>n;
for (int i=1; i<=3*n+1; i++)
if (i%2==1) t+=i;
else t-=i;
cout<<t;
}
Câu 13
S = 1 + 2 + 2² + ... + 2¹⁰
2S = 2 + 2² + 2³ + ... + 2¹¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹¹) - (1 + 2 + 2² + ... + 2¹⁰)
= 2¹¹ - 1
= 2048 - 1
= 2047
Câu 14
3n + 2 = 3n - 6 + 8 = 3(n - 2) + 8
Để (3n + 2) ⋮ (n - 2) thì 8 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ n ∈ {-6; -2; 0; 1; 3; 4; 6; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 3; 4; 6; 10}