K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2015

  S = (30/2 + 1/2) + (31/2 + 1/2) + (32/2 + 1/2) + (33/2 + 1/2) +..+ 3n-1/2 + 1/2 

S = n.(1/2) + (1/2)[3^0 + 3^1 + 32 +...+ 3n-1

S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4 

14 tháng 4 2017

S = (30/2 + 1/2) + (31/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3(n-1)/2 + 1/2 

S = n.(1/2) + (1/2)[30 + 31 + 3² +...+ 3(n-1)


S = n/2 + (3n - 1)/4 = (3n + 2n - 1)/4

7 tháng 5 2016

sorry mình 0 bít làm 

7 tháng 5 2016

a, Ta có:

T=2013^0+2013^1+2013^2+...+2013^2009+2013^2010

=> 2013T = 2013+2013^2+2013^3+....+2013^2010+2013^2011

=> 2013T-T = (2013+2013^2+2013^3+....+2013^2010+2013^2011) - (2013^0+2013^1+2013^2+...+2013^2009+2013^2010)

<=> 2012T = 2013^2011-2013^0

<=> 2012T=2013^2011-1

=> 2012T +1 = 2013^2011

11 tháng 12 2022

a: \(s1=\dfrac{999\cdot\left(999+1\right)}{2}=499500\)

b: =>n(n+1)/2=378

=>n(n+1)=756

=>n^2+n-756=0

=>n=27

c: \(5Q=5+5^2+...+5^{101}\)

=>\(4\cdot Q=5^{101}-1\)

hay \(Q=\dfrac{5^{101}-1}{4}\)

15 tháng 7 2015

bài 1

chứng minh chia hết cho 3 nè

s=\(2+2^2+2^3+...+2^{100}\)

s=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

s=\(2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)

s=\(2.3+2^2.3+...+2^{99}.3\)

s=\(3.\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 => s chia hết cho 3(đpcm)

chứng minh chia hết cho 5

s=\(\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

s=\(2.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)

s=\(2.15+...+2^{97}.15\)

s=\(15.\left(2+...+2^{97}\right)\)chia hết cho 5=> s chia hết cho 5

mong là có thể giúp được bạn

 

 

4 tháng 1 2018

tui ko  bit