K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

a/ \(\tan^2x-\cot^2\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-1-\frac{1}{\sin^2\left(x-\frac{\pi}{4}\right)}+1=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\sin x.\cos\frac{\pi}{4}-\cos x.\sin\frac{\pi}{4}\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\frac{\sqrt{2}}{2}\sin x-\frac{\sqrt{2}}{2}\cos x\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x}=0\)

\(\Leftrightarrow\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x-\cos^2x=0\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}\cos^2x-\sin x.\cos x-\frac{1}{2}\cos^2x=0\)

\(\Leftrightarrow\cos^2x+\sin x.\cos x-\frac{1}{2}=0\)

Đến đây là dễ r nha bn :3

NV
28 tháng 11 2019

a/ Thiếu đề, sau dấu "-" hình như còn gì đó

b/ \(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=sin\left(\frac{\pi}{4}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

c/ \(\Rightarrow sin2x=-sinx\Leftrightarrow sin2x=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=-x+k2\pi\\2x=\pi+x+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)

d/ \(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1\)

\(\Leftrightarrow sinx.cosx=0\Leftrightarrow sin2x=0\)

\(\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)

e/ f/ Thiếu đề

g/ \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=-cos2x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=cos\left(\pi-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=2x+k2\pi\\3x=-2x+k2\pi\\3x=\pi-2x+k2\pi\\3x=2x-\pi+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=-\pi+k2\pi\end{matrix}\right.\)

28 tháng 7 2019
https://i.imgur.com/mVqlQRs.jpg
28 tháng 7 2019
https://i.imgur.com/tXKeJRL.jpg
25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

19 tháng 9 2023

hết cứu đi mà làm

25 tháng 6 2021

a, \(cos^2x-cosx=0\)

\(\Leftrightarrow cosx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=0\end{matrix}\right.\)

b, \(2sin2x+\sqrt{2}sin4x=0\)

\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)

\(\Leftrightarrow sin2x\left(1+\sqrt{2}cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}cos2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\cos2x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\2x=\dfrac{3\pi}{4}+k2\pi\\2x=\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{3\pi}{8}+k\pi\\x=\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)

25 tháng 6 2021

a, \(cos^2x-cosx=0\)

\(\Leftrightarrow cosx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\) (k ∈ Z)

Vậy...

b, \(2sin2x+\sqrt{2}sin4x=0\)

\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)

\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\dfrac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\pm\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\)

Vậy...

c, \(8cos^2x+2sinx-7=0\)

\(\Leftrightarrow8\left(1-sin^2x\right)+2sinx-7=0\)

\(\Leftrightarrow8sin^2x-2sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)

Vậy...

d, \(4cos^4x+cos^2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\dfrac{3}{4}\\cos^2x=-1\left(loai\right)\end{matrix}\right.\) 

\(\Leftrightarrow\dfrac{cos2x+1}{2}=\dfrac{3}{4}\)

\(\Leftrightarrow cos2x=\dfrac{1}{2}\)

\(\Leftrightarrow2x=\pm\dfrac{\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k\pi\)

Vậy...

e, \(\sqrt{3}tanx-6cotx+\left(2\sqrt{3}-3\right)=0\) (ĐK: \(x\ne\dfrac{k\pi}{2}\))

\(\Leftrightarrow\sqrt{3}tanx-\dfrac{6}{tanx}+\left(2\sqrt{3}-3\right)=0\)

\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\left(tm\right)\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)

Vậy...

 

a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)

=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi

=>x=pi/8+kpi hoặc x=-pi/8+kpi

b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)

=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi

=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi

=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi

d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)

=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi

=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi

=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2

e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)

=>x-pi/3=kpi

=>x=kpi+pi/3

\(a,\sqrt{2}\times x-\sqrt{50}=0\)

\(2\times x^2-50=0\)

\(2\times x^2=50\)

\(x^2=25\)

\(x=\hept{\begin{cases}-5\\5\end{cases}}\)

24 tháng 7 2019

Tìm GTNN của A= x- căn x

Giúp mk vs nhé , mk cần gấp☺️☺️

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618