Chứng minh đẳng thức :
7520=4510. 530
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
7520 = 4510.530
Ta có: 4510.530 = (9.5)10.530 = 910.510.530 = (32)10.540
=320.(52)20 = 320.2520 = (3.25)20 = 7520
Vế phải bằng vế trái nên đẳng thức được chứng minh
\(\dfrac{x^2+2x+1}{2x^2+x-1}=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(2x-1\right)}\)
=(x+1)/(2x-1)
\(sin^6a+cos^6a=\left(sin^2a\right)^3+\left(cos^2a\right)^3\)
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
d, \(\dfrac{\left(sinx+cosx\right)^2-1}{2cotx-sin2x}=tan^2x\)
\(\Leftrightarrow\dfrac{sin^2x+cos^2x+2sinx.cosx-1}{2cotx-sin2x}=tan^2x\)
\(\Leftrightarrow2sinx.cosx=tan^2x\left(2cotx-sin2x\right)\)
\(\Leftrightarrow2sinx.cosx=\dfrac{sin^2x}{cos^2x}\left(2\dfrac{cosx}{sinx}-2sinx.cosx\right)\)
\(\Leftrightarrow sinx.cosx=\dfrac{sinx}{cosx}-\dfrac{sin^3x}{cosx}\)
\(\Leftrightarrow sinx.cos^2x=sinx-sin^3x\)
\(\Leftrightarrow sinx.cos^2x=sinx\left(1-sin^2x\right)\)
\(\Leftrightarrow sinx.cos^2x=sinx.cos^2x\)
\(\Rightarrowđpcm\)
a, \(\left(1-sin^2x\right).tan^2x+\left(1-cos^2x\right).cot^2x=1\)
\(\Leftrightarrow cos^2x.\dfrac{sin^2x}{cos^2x}+sin^2x.\dfrac{cos^2x}{sin^2x}=1\)
\(\Leftrightarrow sin^2x+cos^2x=1\)
\(\Rightarrowđpcm\)
b, \(1-sin^2x-sin^2x.cot^2x=0\)
\(\Leftrightarrow cos^2x-cos^2x=0\)
\(\Rightarrowđpcm\)
c, \(cos^4x+sin^2x.cos^2x+sin^2x=1\)
\(\Leftrightarrow\left(cos^2x+sin^2x\right).cos^2x+sin^2x=1\)
\(\Leftrightarrow cos^2x+sin^2x=1\)
\(\Rightarrowđpcm\)
xem trong sbt toan nhe ban trong do co 2 cau
lan giai va chi tiet nhe
4510 . 530
= 4510 . (53)10
= 4510 . 12510
= ( 45 . 125 )10
= 562510
= (752)10
= 7520 (đpcm)
=))