K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

+ Xét tg OMN có IM=IO và KN=KO => IK là đường trung bình của tg OMN => IK//MN

+ Xét hình thang IKNM có PI=PM và QK=QN => PQ là đường trung bình của hình thang IKNM => PQ//IK//MN

+ Xét tg IMN có PI=PM; PH//MN => PH là đường trung bình của tg IMN => PH=MN/2

+ Xét tg KMN chứng minh tương tự cũng có QJ=MN/2

=> PH+QJ=(PJ+JH)+(QH+JH)=PJ+QH+2JH=MN (*)

+ Xét tg MIK có PI=PM; PJ//IK => PJ là đường trung bình của tg MIK => PJ=IK/2

+ Xét tg NIK chững minh tương tự cũng có QH=IK/2

Thay PJ=QH=IK/2 vào (*)

=> PJ+QH+2JH=IK/2+IK/2+2JH=MN => IK+2JH=MN => JH=(MN-IK)/2

13 tháng 7 2018

A B C I K M N D E 8cm

a) Xét  \(\Delta ABC\)có  \(AE=EB\)

                                  \(AD=DC\)

\(\Rightarrow\)ED là đường trung bình  \(\Delta ABC\)

\(\Rightarrow\hept{\begin{cases}ED=\frac{1}{2}BC\Leftrightarrow ED=\frac{1}{2}\times8=4\left(cm\right)\\ED//BC\end{cases}}\)

\(\Rightarrow\)EDCB là hình thang

Lại có :  \(EM=MB\)

             \(DN=NC\)

\(\Rightarrow\)MN là đường trung bình của hình thang EDCB

\(\Rightarrow MN=\frac{ED+BC}{2}=\frac{4+8}{2}=\frac{12}{2}=6\left(cm\right)\)

Vậy  \(MN=6cm\)

b) Xét  \(\Delta BED\)có M là trung điểm BE ; MI // ED

\(\Rightarrow\)MI là dường trung bình  \(\Delta BED\)

\(\Rightarrow MI=\frac{1}{2}ED=\frac{1}{2}\times4=2\left(cm\right)\)

Xét  \(\Delta CED\)có N là trung điểm CD ; NK // ED

\(\Rightarrow\)NK là đường trung bình  \(\Delta CED\)

\(\Rightarrow NK=\frac{1}{2}ED=\frac{1}{2}\times4=2\left(cm\right)\)

Lại có :  \(MI+IK+KN=MN\)

\(\Leftrightarrow2+IK+2=6\)

\(\Leftrightarrow IK=2\left(cm\right)\)

Vậy  \(MI=IK=KN\left(=2cm\right)\)

20 tháng 9 2020

1)\(\Delta\)ABC có E là trung điểm của AB, D là trung điểm của AC nên ED là đường trung bình của tam giác => ED//BC

Tứ giác EDCB có ED//BC nên là hình thang (đpcm)

2) Hình thang EDCB có M, N lần lượt là trung điểm của BE và CD nên MN là đường trung bình của hình thang => MN // ED hay \(\hept{\begin{cases}NK//ED\\MI//ED\end{cases}}\)

\(\Delta\)BED có M là trung điểm của BE và MI//ED nên I là trung điểm của BD

Tương tự ta suy ra được K là trung điểm của CE

c) Ta có: IK = IN  - KN = 1/2BC - 1/2ED = \(\frac{BC-ED}{2}=\frac{BC-\frac{BC}{2}}{2}=\frac{\frac{BC}{2}}{2}=\frac{BC}{4}\)

\(KN=MI=\frac{ED}{2}=\frac{\frac{BC}{2}}{2}=\frac{BC}{4}\)

Từ đó suy ra MI = IK = KN (đpcm)

a:

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC

Xét hình thang BEDC có 

M là trung điểm của EB

N là trung điểm của DC

Do đó: MN là đường trung bình của hình thang BEDC 

Suy ra: MN//ED//BC

Xét ΔEBD có

M là trung điểm của EB

MI//ED

Do đó: I là trung điểm của BD

Xét ΔEDC có 

N là trung điểm của DC

NK//ED

Do đó: K là trung điểm của EC

Xét ΔEBC có

M là trung điểm của EB

K là trung điểm của EC

Do đó: MK là đường trung bình của ΔEBC

Suy ra: \(MK=\dfrac{BC}{2}\left(1\right)\) và MK//BC

Xét ΔDBC có 

I là trung điểm của BD

N là trung điểm của DC
Do đó: IN là đường trung bình của ΔDBC

Suy ra: \(IN=\dfrac{BC}{2}\left(2\right)\)

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: \(ED=\dfrac{BC}{2}\left(3\right)\)

Từ (1), (2) và (3) suy ra MK=IN=ED

20 tháng 9 2016

dễ

20 tháng 9 2016

thế thì lm đi