K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Ta có:\(a+b\ge2\sqrt{ab}\Rightarrow a-2\sqrt{ab}+b\ge0\Rightarrow\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2\ge0\Rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\left(LĐ\right)\)Dấu "=" xảy ra <=> a = b

6 tháng 9 2017

a) \(BĐT\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Leftrightarrow\sqrt{\frac{c\left(a-c\right)}{ab}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)

\(\Leftrightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le1\)

Áp dụng AM-GM:\(VT\le\frac{1}{2}\left(\frac{c}{b}+1-\frac{c}{a}+\frac{c}{a}+1-\frac{c}{b}\right)=1\left(đpcm\right)\)

Dấu = xảy ra khi (a+b).c=ab

b) \(2+b+c+2+b+c\ge2\sqrt{\left(b+1\right)\left(c+1\right)}+2+b+c=\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge4\left(1+a\right)\)

\(\Leftrightarrow b+c\ge2a\)

5 tháng 9 2017

cau a) dung cosi

\(\sqrt{c\left(a-c\right)}\le\frac{a-c+c}{2}\) ap dung cosi cho hai so c va a-c

tuong tu voi cac so khac

\(BT\le\frac{a-c+c}{2}+\frac{b-c+c}{2}-\frac{a+b}{2}\)(bt la VT cua de)

=> DPCM

b)

dung cosi nhu cau a

lam nhanh luon

\(\sqrt{1+b}\ge\frac{b+1+1}{2}\)

tuong tu

\(BT\ge\frac{b+2}{2}+\frac{c+2}{2}\ge a+2\)

<=> b+c>=2a

25 tháng 6 2017

Ta có: \(\frac{a^2+b^2}{a-b}\)\(\frac{a^2-2ab+b^2+2ab}{a-b}\)\(\frac{\left(a-b\right)^2+2ab}{a-b}\)= (a -b) + \(\frac{2ab}{a-b}\)

Vì a>b>0 nên áp dụng BĐT Cô-Si cho 2 số không âm ta có :

(a - b) +\(\frac{2ab}{a-b}\)\(\ge\)\(2\sqrt{\left(a-b\right)\cdot\frac{2ab}{a-b}}\)= 2\(\sqrt{2ab}\)\(2\sqrt{2}\)( Vì ab = 1) ( đpcm)

6 tháng 9 2017

b)Áp dụng BĐT AM-GM ta có:

\(\dfrac{\sqrt{a}}{\sqrt{b}}+\dfrac{\sqrt{b}}{\sqrt{a}}\ge2\sqrt{\dfrac{\sqrt{a}}{\sqrt{b}}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}}=2\)

Xảy ra khi \(a=b\)

c)Áp dụng BĐT \(x^2+y^2\ge2xy\) có:

\(VT=\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

\(\ge2\sqrt{\left(a+b\right)\cdot2\sqrt{ab}}=2\sqrt{2\left(a+b\right)\cdot\sqrt{ab}}=VP\)

Xảy ra khi \(a=b\)

6 tháng 9 2017

a)\(\dfrac{a^2+3}{\sqrt{a^2+3}}=\sqrt{a^2+3}\ge\sqrt{3}< 2\)\

sai đề

14 tháng 10 2015

áp dụng bất đẳng thức Bun-nhi-a ta có:

\(A^2\le3\left(a+b+c+ab+bc+ac\right)\le3\left(a+b+c+\frac{\left(a+b+c\right)^2}{3}\right)=4\)

=> A\(\le\)2(dpcm)

NV
15 tháng 7 2020

\(VT=\sqrt{\left(ab\right)^2+a^2}+\sqrt{\left(bc\right)^2+b^2}+\sqrt{\left(ca\right)^2+c^2}\)

\(VT\ge\sqrt{\left(ab+bc+ca\right)^2+\left(a+b+c\right)^2}\)

\(VT\ge\sqrt{\left(ab+bc+ca\right)^2+3\left(ab+bc+ca\right)}=2\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

6 tháng 12 2015

\(VT=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2}{a-b}\ge2\sqrt{\left(a-b\right).\frac{2}{a-b}}=2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Lời giải:

$a^2+2b^2+ab=\frac{a^2}{2}+\frac{3b^2}{2}+\frac{(a+b)^2}{2}$
Áp dụng BĐT Bunhiacopxky:

$[\frac{a^2}{2}+\frac{3b^2}{2}+\frac{(a+b)^2}{2}](2+6+8)\geq (a+3b+2a+2b)^2$

$\Rightarrow \sqrt{a^2+2b^2+ab}\geq \frac{3a+5b}{4}$

Hoàn toàn tương tự với các căn còn lại suy ra:
$\text{VT}\geq \frac{3a+5b}{4}+\frac{3b+5c}{4}+\frac{3c+5a}{4}=2(a+b+c)$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Bạn xem lại đề xem có nhầm không?