Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{a+b}{c+ab}}+\sqrt{\dfrac{b+c}{a+bc}}+\sqrt{\dfrac{c+a}{b+ac}}\)
Bài này có xuất hiện rồi ,you vào mục tìm kiếm là thấy liền.
Lời giải vắn tắt:
\(A=\sum\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sum\dfrac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(1+ab-c^2\right)}}\ge\sum\dfrac{2\left(ab+2c^2\right)}{1+2ab+c^2}=\sum\dfrac{2\left(ab+2c^2\right)}{\left(a+b\right)^2+2c^2}\ge\sum\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}=\sum\left(ab+2c^2\right)=ab+bc+ca+2\)
( thay \(a^2+b^2+c^2=1\))
\(P=\sqrt{a^2b^2+a^2}+\sqrt{b^2c^2+b^2}+\sqrt{c^2a^2+c^2}\)
\(P\ge\sqrt{\left(ab+bc+ca\right)^2+\left(a+b+c\right)^2}\)
\(P\ge\sqrt{\left(ab+bc+ca\right)^2+3\left(ab+bc+ca\right)}=2\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
ta có \(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}.\sqrt{ab+2c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}\sqrt{ab+2c^2}}\)
Áp dụng bất đẳng thức cô si ta có
\(\sqrt{ab+1-c^2}\sqrt{ab+2c^2}\le\frac{1}{2}\left(ab+1-c^2+ab+2c^2\right)=\frac{1}{2}\left(2ab+1+c^2\right)\)
=\(\frac{1}{2}\left(2ab+a^2+b^2+2c^2\right)=\frac{1}{2}\left[\left(a+b\right)^2+2c^2\right]\le\frac{1}{2}\left(2a^2+2b^2+2c^2\right)=\left(a^2+b^2+c^2\right)\) =1
=> \(\frac{ab+2c^2}{...}\ge\frac{ab+2c^2}{1}=2c^2+ab\)
tương tự + vào thì e sẽ ra điều phải chứng minh
Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM
Mình biết giải rồi ko bt đúg ko nha
Ta có vế phải
Mình ko bt viết dấu căng
Căng a bình +1 căng b bình + 1 + căng c bình + 1
Vì a, b,c > 0
Đưa ra ngoài dấu căng ta sẽ đc
a×1 + b×1 +c× 1
Ta có chắc chắn rằng a + b + c ≤ 2(a+b+c)
Vậy viết lại cái đề
Bạn cũng có thể biến đổi vế trái nha
\(VT=\sqrt{\left(ab\right)^2+a^2}+\sqrt{\left(bc\right)^2+b^2}+\sqrt{\left(ca\right)^2+c^2}\)
\(VT\ge\sqrt{\left(ab+bc+ca\right)^2+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\left(ab+bc+ca\right)^2+3\left(ab+bc+ca\right)}=2\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)