Chứng minh:
\(\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\right)=x-y\) ( với x > 0, y > 0 )
Mọi người giúp mình với
Ai làm đúng mình kick cho 3 kick
Cảm ơn mọi người!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4}{x-1}\)
b) \(\frac{4}{x-1}=7\)
\(\Leftrightarrow4=7.\left(x-1\right)\)
\(\Leftrightarrow\frac{4}{7}=x-1\)
\(\Leftrightarrow\frac{4}{7}+1=x\)
\(\Leftrightarrow\frac{11}{7}=x\)
\(\Rightarrow x=\frac{11}{7}\)
Từ biểu thức trên không thể có x = y
\(\sqrt{\left(2-\frac{1}{y}\right).\frac{1}{y}}=\sqrt{\left(2-\frac{1}{x}\right).\frac{1}{x}}\)
=> \(\left(2-\frac{1}{y}\right).\frac{1}{y}=\left(2-\frac{1}{x}\right).\frac{1}{x}\)
=> \(\frac{2}{y}-\frac{1}{y^2}=\frac{2}{x}-\frac{1}{x^2}\)
=> \(\frac{2}{x}-\frac{2}{y}=\frac{1}{x^2}-\frac{1}{y^2}\)
=> \(2.\left(\frac{1}{x}-\frac{1}{y}\right)=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}-\frac{1}{y}\right)\)( # )
Với x = y
=> \(\frac{1}{x}=\frac{1}{y}\)
=> \(\frac{1}{x}-\frac{1}{y}=0\)
=> ( # ) luôn đúng
Với \(x\ne y\)
=> \(\frac{1}{x}-\frac{1}{y}\ne0\)
Chia cả hai vế của ( # ) cho \(\frac{1}{x}-\frac{1}{y}\)
=> 2 = \(\frac{1}{x}+\frac{1}{y}\)
Vậy với x, y thỏa mãn \(2=\frac{1}{x}+\frac{1}{y}\)hoặc x = y ( x, y > 0 ) thì \(\sqrt{\left(2-\frac{1}{y}\right).\frac{1}{y}}=\sqrt{\left(2-\frac{1}{x}\right).\frac{1}{x}}\)luôn đúng và với \(x\ne y\)thì biểu thức vẫn có thể đúng.
Vậy với biểu thức đúng thì x chưa chắc đã bằng y
Cám ơn Nguyễn Chí Thành
Bạn đúng rồi
Đúng là mk nghĩ thiếu thường hợp .
^.^
Ta có:
\(VT=\left(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\right)\\ =\left(\frac{\sqrt{x}\cdot\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\right)\\ =\left(\frac{\sqrt{xy}\left[\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2\right]}{\sqrt{xy}}\right)\\ =x-y=VP\left(đpcm\right)\)
Vậy với x>0, y>0 ta có đpcm
\(\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)= x-y
=\(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)
= \(x-y=x-y\)
\(P=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\frac{1-xy+x+y+2xy}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}.\)
\(P=\frac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1+x+y+xy}\)
\(P=\frac{2\sqrt{x}}{1+x+y+xy}\)Với ĐK \(x\ge0\) và \(y\ge0\)Và \(xy\ne1\)
Nguyễn Ngọc Anh Minh bạn làm sai rồi kìa bước cuối cùng vẫn còn \(2y\sqrt{x}\)
=\(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\left[\left(\sqrt{x}+\sqrt{y}\right)-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right].\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
Mình gi rút gọn bạn tự hiểu nha:
\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
=\(\left(\sqrt{x}-\sqrt{y}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{x-y}\right).\frac{\sqrt{x}+\sqrt{y}}{x+y-\sqrt{xy}}\)
=\(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x+y-\sqrt{xy}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)}{\left(x-y\right)\left(x+y-\sqrt{xy}\right)}\)
=
Đề bài sai nhé, từ giả thiết chỉ xác định được \(x+y=0\Rightarrow y=-x\)
\(\Rightarrow A=4x^2-x^2+x^2+15=4x^2+15\) ko rút gọn được
Nguyễn Việt Lâm Giáo viên, bn có thể sửa đề bài cho mk được không ạ??? Cám ơn bn nhiều lắm lắm!!!
\(\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right).\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\frac{-y+\sqrt{x}.\sqrt{y}}{\sqrt{y}}.\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\frac{\left(\sqrt{x}.\sqrt{y}-y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}}\)
\(=\frac{xy-y^2}{y}\)
\(=\frac{y\left(x-y\right)}{y}\)
= x - y (đpcm)