K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\\ \Leftrightarrow\left(12x+7\right)^2\left(12x+8\right)\left(12x+6\right)=72\)

\(\text{Đặt}:12x+7=t\)

\(\Leftrightarrow t^2\left(t+1\right)\left(t-1\right)=72\\ \Leftrightarrow t^2\left(t^2-1\right)=72\\ \Leftrightarrow t^2\left(t^2-1\right)-72=0\\ \Leftrightarrow t^4-t^2-72=0\\ \Leftrightarrow t^4-9t^2+8t^2-72=0\\ \Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2-9\right)\left(t^2-8\right)=0\\ \Leftrightarrow\left(t-3\right)\left(t+3\right)=0\left(do:t^2-8\ne0\right)\\ \Leftrightarrow\left(12x+7+3\right)\left(12x+7-3\right)=0\\ \Leftrightarrow\left(12x+10\right)\left(12x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}12x+10=0\\12x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}12x=-10\\12x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{6}\\x=-\frac{1}{3}\end{matrix}\right.\)

26 tháng 12 2017

<=> (12²x²+2.12.7x + 7²).(6x²+7x+2) = 3 
<=> [24.(6x² +7x +2) +1].(6x² +7x +2) =3 
đặt: a= 6x² +7x +2 
<=> (24a+1).a = 3 
=> a=...

26 tháng 12 2017

⇔ (3a-1)(8a+3)=0 
⇔ a=1/3 hoặc a=−3/8 

NV
29 tháng 6 2019

\(x=0\) không phải nghiệm, pt tương đương:

\(\frac{12}{x+4+\frac{2}{x}}-\frac{3}{x+2+\frac{2}{x}}=1\)

Đặt \(x+2+\frac{2}{x}=a\)

\(\frac{12}{a+2}-\frac{3}{a}=1\Leftrightarrow12a-3\left(a+2\right)=a\left(a+2\right)\)

\(\Leftrightarrow a^2-7a+6=0\Rightarrow\left[{}\begin{matrix}a=1\\a=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+2+\frac{2}{x}=1\\x+2+\frac{2}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-4x+2=0\end{matrix}\right.\)

16 tháng 10 2021

\(ĐK:x\in R\)

Đặt \(x^2-2x=a\), PTTT:

\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)

 

17 tháng 2 2017

\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\) (Đkxđ: \(x\ne-7;x\ne\frac{3}{2}\))

\(\Rightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-9x-4x-6x^2-42x-x=7-6\)

\(\Leftrightarrow-56x=1\)

\(\Leftrightarrow x=-\frac{1}{56}\) (t/m đkxđ)

Vậy \(S=\left\{-\frac{1}{56}\right\}\)

17 tháng 2 2017

ĐKXĐ: x khác -7 và 3/2

Từ đề bài <=> (3x-2)(2x-3) = (6x+1)(x+7)

<=> 6x^2-4x-9x+6 = 6x^2+x+42x+7

<=> -13x+6 = 43x+7

<=> 6-7 = 43x+13x

<=> 56x = -1

<=> x = -1/56 (TM)

Vậy ...

NV
11 tháng 12 2018

Ta có

\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)

\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)

Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)

\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

13 tháng 2 2020

câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(6-2x)=0

bước sau tự làm nốt nha !

câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a

13 tháng 2 2020

Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)