Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\\ \Leftrightarrow\left(12x+7\right)^2\left(12x+8\right)\left(12x+6\right)=72\)
\(\text{Đặt}:12x+7=t\)
\(\Leftrightarrow t^2\left(t+1\right)\left(t-1\right)=72\\ \Leftrightarrow t^2\left(t^2-1\right)=72\\ \Leftrightarrow t^2\left(t^2-1\right)-72=0\\ \Leftrightarrow t^4-t^2-72=0\\ \Leftrightarrow t^4-9t^2+8t^2-72=0\\ \Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2-9\right)\left(t^2-8\right)=0\\ \Leftrightarrow\left(t-3\right)\left(t+3\right)=0\left(do:t^2-8\ne0\right)\\ \Leftrightarrow\left(12x+7+3\right)\left(12x+7-3\right)=0\\ \Leftrightarrow\left(12x+10\right)\left(12x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}12x+10=0\\12x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}12x=-10\\12x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{6}\\x=-\frac{1}{3}\end{matrix}\right.\)
\(ĐK:\frac{3-\sqrt{17}}{2}\le x\le\frac{3+\sqrt{17}}{2};\orbr{\begin{cases}x\ge\frac{1}{\sqrt{5}}\\x\le-\frac{1}{\sqrt{5}}\end{cases}}\)
Bình phương hai vế của phương trình, ta được: \(2-x^2+3x=5x^2-1\Leftrightarrow6x^2-3x-3=0\Leftrightarrow3\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\left(tmđk\right)\)
Vậy phương trình có tập nghiệm S = {1; -1/2} }
Lời giải:
ĐK: $x\geq \frac{-1}{3}$. Ta có:
\(4x^2+5+\sqrt{3x+1}=13x\)
\(\Leftrightarrow (4x^2-11x+3)-(2x-2-\sqrt{3x+1})=0(*)\)
TH1: Nếu \(2x-2+\sqrt{3x+1}=0(1)\)
\(\Rightarrow \sqrt{3x+1}=2-2x\Rightarrow \left\{\begin{matrix} x\leq 1\\ 3x+1=(2-2x)^2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 1\\ 4x^2-11x+3=0\end{matrix}\right.\Rightarrow x=\frac{11-\sqrt{73}}{8}\) . Thử lại vào PT ban đầu không thấy đúng (loại)
TH2: Nếu $2x-2+\sqrt{3x+1}\neq 0$ (tức là \(x\neq \frac{11-\sqrt{73}}{8}\))
\((*)\Leftrightarrow (4x^2-11x+3)-\frac{(2x-2)^2-(3x+1)}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow (4x^2-11x+3)-\frac{4x^2-11x+3}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow \frac{(4x^2-11x+3)(2x-3+\sqrt{3x+1})}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow \left[\begin{matrix} 4x^2-11x+3=0\\ 2x-3+\sqrt{3x+1}=0\end{matrix}\right.\)
Nếu $4x^2-11x+3=0\Rightarrow x=\frac{11+\sqrt{73}}{8}$ (loại TH $x=\frac{11-\sqrt{73}}{8}$
Nếu \(2x-3+\sqrt{3x+1}=0\Rightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ (2x-3)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ 4x^2-15x+8=0\end{matrix}\right.\Rightarrow x=\frac{15-\sqrt{97}}{8}\)
Thử lại thấy thỏa mãn. Vậy.........
Lời giải:
ĐK: $x\geq \frac{-1}{3}$. Ta có:
\(4x^2+5+\sqrt{3x+1}=13x\)
\(\Leftrightarrow (4x^2-11x+3)-(2x-2-\sqrt{3x+1})=0(*)\)
TH1: Nếu \(2x-2+\sqrt{3x+1}=0(1)\)
\(\Rightarrow \sqrt{3x+1}=2-2x\Rightarrow \left\{\begin{matrix} x\leq 1\\ 3x+1=(2-2x)^2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 1\\ 4x^2-11x+3=0\end{matrix}\right.\Rightarrow x=\frac{11-\sqrt{73}}{8}\) . Thử lại vào PT ban đầu không thấy đúng (loại)
TH2: Nếu $2x-2+\sqrt{3x+1}\neq 0$ (tức là \(x\neq \frac{11-\sqrt{73}}{8}\))
\((*)\Leftrightarrow (4x^2-11x+3)-\frac{(2x-2)^2-(3x+1)}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow (4x^2-11x+3)-\frac{4x^2-11x+3}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow \frac{(4x^2-11x+3)(2x-3+\sqrt{3x+1})}{2x-2+\sqrt{3x+1}}=0\)
\(\Leftrightarrow \left[\begin{matrix} 4x^2-11x+3=0\\ 2x-3+\sqrt{3x+1}=0\end{matrix}\right.\)
Nếu $4x^2-11x+3=0\Rightarrow x=\frac{11+\sqrt{73}}{8}$ (loại TH $x=\frac{11-\sqrt{73}}{8}$
Nếu \(2x-3+\sqrt{3x+1}=0\Rightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ (2x-3)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq \frac{3}{2}\\ 4x^2-15x+8=0\end{matrix}\right.\Rightarrow x=\frac{15-\sqrt{97}}{8}\)
Thử lại thấy thỏa mãn. Vậy.........
ĐK:x\(\ge\dfrac{1}{3}\)
\(x^2-x+1=2\sqrt{3x-1}\Leftrightarrow x^2+2x+1=3x-1+2\sqrt{3x-1}+1\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{3x-1}-1\right)^2\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=\sqrt{3x-1}-1\\x-1=1-\sqrt{3x-1}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\sqrt{3x-1}\\\sqrt{3x-1}=2-x\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x^2=3x-1\\3x-1=4-4x+x^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x^2-3x+1=0\\x^2-7x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{3+\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{3-\sqrt{5}}{2}\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{7+\sqrt{29}}{2}\left(ktm\right)\\x=\dfrac{7-\sqrt{29}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy S={\(\dfrac{3\pm\sqrt{5}}{2}\)}
dk \(\hept{\begin{cases}x\left(3x+1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{3}\end{cases}}}\)
vì x khác 0 nên chia cả 2 vế cho \(\sqrt{x}\)ta được \(\sqrt{3x+1}-\sqrt{x-1}=2\sqrt{x}< =>\)\(\sqrt{x-1}+2\sqrt{x}-\sqrt{3x+1}=0< =>\)\(\sqrt{x-1}+\frac{4x-\left(3x+1\right)}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(\sqrt{x-1}+\frac{x-1}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(< =>\sqrt{x-1}\left(1+\frac{\sqrt{x-1}}{2\sqrt{x}+\sqrt{3x+1}}\right)=0< =>\sqrt{x-1}=0\) (vì biểu thức trong ngoặc luôn \(\ge1\)) <=> x-1= 0 <=> x=1 (thỏa mãn điều kiện)
ĐKXĐ: ...
\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)
Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)
\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)
Pt trở thành:
\(3t=t^2-10\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)
Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)