Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+6x+5\right)\left(x+4\right)\left(x+2\right)=40\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt \(x^2+6x+5=t\) ,ta có:
\(t\left(t+3\right)=40\)
\(\Leftrightarrow t^2+3t-40=0\)
\(\Leftrightarrow t^2+8t-5t-40=0\)
\(\Leftrightarrow\left(t+8\right)\left(t-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-8\\t=5\end{matrix}\right.\)
Với t = -8
\(x^2+6x+5=-8\)
\(\Leftrightarrow x^2+6x+13=0\) ( vô lý vì \(x^2+6x+13>0\forall x\) )
Với t = 5
\(x^2+6x+5=5\)
\(\Leftrightarrow x^2+6x=0\)
\(\Leftrightarrow x\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy ............................
Đặt bt trong ngoặc đầu tiên = t
pt trở thành
\(t\left(t-2\right)-3=0\Leftrightarrow t^2-2t-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-1\end{matrix}\right.\)
với t=3, ta có:
\(x^2+2x-1=3\Leftrightarrow x^2+2x-4=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
t= -1 tương tự
<=> (12²x²+2.12.7x + 7²).(6x²+7x+2) = 3
<=> [24.(6x² +7x +2) +1].(6x² +7x +2) =3
đặt: a= 6x² +7x +2
<=> (24a+1).a = 3
=> a=...
⇔ (3a-1)(8a+3)=0
⇔ a=1/3 hoặc a=−3/8