Phân tích thành nhân tử:
x^2+4x+9x^2-36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhắc lại: Phương trình bậc hai phân tích được thành nhân tử khi và chỉ khi nó tồn tại nghiệm.
Ta thấy: `x^2-4x+12=(x-2)^2+8>=8>0AAx` nên ta không thể phân tích nhân tử cho phương trình này.
x² - 4x - 12
= x² + 2x - 6x - 12
= (x² + 2x) - (6x + 12)
= x(x + 2) - 6(x + 2)
= (x + 2)(x - 6)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
\(=x^3+3x^2-7x^2-21x+12x+36\)
\(=x^2\left(x+3\right)-7x\left(x+3\right)+12\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+12\right)\)
\(=\left(x+3\right)\left(x^2-4x-3x+12\right)\)
\(=\left(x+3\right)[x\left(x-4\right)-3\left(x-4\right)]\)
\(=\left(x+3\right)\left(x-4\right)\left(x-3\right)\)
A, \(x^3-4x^2-9x+36=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2-9\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
\(b,x^2-y^2-2x-2y=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
b: \(=x^2-4x+4-y^2-6y-9\)
\(=\left(x-2\right)^2-\left(y+3\right)^2\)
\(=\left(x-2-y-3\right)\left(x-2+y+3\right)\)
\(=\left(x-y-5\right)\left(x+y+1\right)\)
\(x^2-6x+9-9y^2=\left(x^2-2\cdot x\cdot3+3^2\right)-\left(3y\right)^2=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x+3y-3\right)\left(x-3y-3\right)\)
\(x^4-x^2+2x+2\)
\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)
\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)
\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)