K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

Xét tứ giác \(HECD\) có :

\(HEC=90^0\) ( Vì \(BE\)\(AC\) ) 

\(HDC=90^0\) ( Vì \(AD\)\(BC\) )

Mà 2 góc này đối nhau do đó :

 Tứ giác \(HECD\) nội tiếp đường tròn => ∠\(HDE\)\(=\)\(HCE\) ( Cùng chắn cung \(HE\) )\(\left(1\right)\)

Tương tự :

Tứ giác \(HFBD\) cũng nội tiếp đường tròn ( Vì ∠\(HBF\)\(=90^0\) và ∠\(HDB=90^0\))

=> ∠\(HDF=\) ∠\(FBH\) ( Cùng chắn cung \(HF\) )\(\left(2\right)\)

Ta lại có :

\(CFB=\) ∠\(BEC\) \(=90^0\)

Mà 2 góc này cùng nhìn cạnh \(BC\) do đó :

Tứ giác \(EFBC\:\) nội tiếp đường tròn => ∠\(EBF\)\(=\) ∠\(ECF\) ( Cùng chắn cung \(EF\) )\(\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\) suy ra ∠\(IDH=\) ∠\(KDH\) hay \(DH\) là tia phân giác của △\(DIK\)\(\left(4\right)\)

Mặc khác : Đường thẳng qua \(H\)//BC => Đường thẳng đó ⊥ \(AD\) tại \(H\) hay \(DH\) là đường cao của △\(DIK\)\(\left(5\right)\)

Từ \(\left(4\right)\) và \(\left(5\right)\) suy ra △\(DIK\) cân =>\(đpcm\)

 

 

13 tháng 6 2021

dùng kiến thức lớp 7 được ko anh

 

27 tháng 4 2021

Ta có: AEH=90⁰.

=>HAE+AHE=90⁰.(1)

Ta có: ∆BHD vuông tại D.

=>DBH+BHD=90⁰.(2)

Từ (1) và (2) suy ra: HAE+AHE=DBH+BHD=90⁰.

Mà: AHE=DBH (2 góc đối đỉnh).

=> HAE=DBH.

=>HAE=DBE.

=>∆HEA~CBE(g.g).

=>AE/BE=HE/CE.

=>BE.HE=AE.CE.=>4BE.HE=4AE.CE.=>4BE.HE=AC².

=> (AE+CE)²=4AE.CE.

=>(AE-CE)²=0.

=>AE=CE 

=> E là trung điểm của AC 

=> BE là đường trung tuyến của ∆ABC 

Mà: BE là đường cao của ∆ABC.

=> ∆ABC cân tại B.

 

 

 

 

 

 

DD
13 tháng 7 2021

Xét tứ giác \(AIDK\)

\(AI//DK,AK//DI\)

Suy ra \(AIDK\)là hình bình hành. 

mà \(AD\)là phân giác trong của góc \(\widehat{IAK}\)nên \(AIDK\)là hình thoi .

Suy ra \(DK=DI\)

do đó tam giác \(IDK\)là tam giác cân. 

5 tháng 11 2017

Gọi diện tích các hình tam giác ABC, MAB, MAC, MBC lần lượt là S, S 1 ,  S 2 ,  S 3 . Ta có:

S =  S 1  +  S 2  +  S 3

Trong đó: S = 1/2 AD.BC = 1/2 BE. AC = 1/2 CF. AB

S 1  = 1/2 MT. AB

S 2  = 1/2 MK. AC

S 3  = 1/2 MH. BC

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8