K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

Xét tứ giác \(HECD\) có :

\(HEC=90^0\) ( Vì \(BE\)\(AC\) ) 

\(HDC=90^0\) ( Vì \(AD\)\(BC\) )

Mà 2 góc này đối nhau do đó :

 Tứ giác \(HECD\) nội tiếp đường tròn => ∠\(HDE\)\(=\)\(HCE\) ( Cùng chắn cung \(HE\) )\(\left(1\right)\)

Tương tự :

Tứ giác \(HFBD\) cũng nội tiếp đường tròn ( Vì ∠\(HBF\)\(=90^0\) và ∠\(HDB=90^0\))

=> ∠\(HDF=\) ∠\(FBH\) ( Cùng chắn cung \(HF\) )\(\left(2\right)\)

Ta lại có :

\(CFB=\) ∠\(BEC\) \(=90^0\)

Mà 2 góc này cùng nhìn cạnh \(BC\) do đó :

Tứ giác \(EFBC\:\) nội tiếp đường tròn => ∠\(EBF\)\(=\) ∠\(ECF\) ( Cùng chắn cung \(EF\) )\(\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\) suy ra ∠\(IDH=\) ∠\(KDH\) hay \(DH\) là tia phân giác của △\(DIK\)\(\left(4\right)\)

Mặc khác : Đường thẳng qua \(H\)//BC => Đường thẳng đó ⊥ \(AD\) tại \(H\) hay \(DH\) là đường cao của △\(DIK\)\(\left(5\right)\)

Từ \(\left(4\right)\) và \(\left(5\right)\) suy ra △\(DIK\) cân =>\(đpcm\)

 

 

13 tháng 6 2021

dùng kiến thức lớp 7 được ko anh

 

DD
13 tháng 7 2021

Xét tứ giác \(AIDK\)

\(AI//DK,AK//DI\)

Suy ra \(AIDK\)là hình bình hành. 

mà \(AD\)là phân giác trong của góc \(\widehat{IAK}\)nên \(AIDK\)là hình thoi .

Suy ra \(DK=DI\)

do đó tam giác \(IDK\)là tam giác cân. 

a: \(\widehat{B}+\widehat{C}=130^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)

hay \(\widehat{BIC}=115^0\)

b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)

nên ΔDAI cân tại D

a: \(\widehat{B}+\widehat{C}=130^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)

hay \(\widehat{BIC}=115^0\)

b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)

nên ΔDAI cân tại D

18 tháng 11 2017