Chứng minh rầng:
a) 999^4+999 có tận cùng 3 chữ số 0
.b) 49^5-49 chia hết cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đúng vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8
b) Sai vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8
c) Sai vì số chia hết cho 5 thì có chữ số tận cùng bằng 0 và 5
d) Đúng
Gọi số phải tìm là abcdeghik
Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12
Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0
Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0
Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0
Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0
Ta có 120000h chia hết cho 7 nên h = 3
Ta có 1200003i chia hết cho 8 nên i = 2
Ta có 12000032k chia hết cho 9 nên k = 1
Vậy, số đó là 120000321
Ta có:
abcde(ngang) chia hết cho 7 ⇔ (khó viết dấu ngoặc lắm). Bạn cứ dựa vào ssau hiệu chia hết 7 mà chứng minh :
Lấy chữ số đầu tiên nhân với 3 rồi cộng thêm chữ số tiếp theo, được bao nhiêu lại nhân với 3 rồi cộng thêm chữa số tiếp theo… cứ như vậy cho đến chữ số cuối cùng. Nếu kết quả cuối cùng này chia hết cho 7 thì số đó chia hết cho 7.
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Ta thấy : 91 x 22 = 2002
991 x 222 = 220002
...........
Dùng quy nạp ta chứng minh được:
99...91 x 22...2 = 2...20..0...2 (2004 chữ số 2, 2005 chữ số 0)
Vậy thì a x b - 5 = 22...219...97 (2003 chữ số 2, 2005 chữ số 9)
Tổng các chữ số của a x b - 5 là: 2 x 2003 + 1 + 9 x 2005 + 7 = 22059 chia hết 3
Vậy a x b - 5 chia hết cho 3.
a) Ta có \(8^2=64\)
\(8^4=8^2=64^2=...6\) (tận cùng là 6)
=> \(\left(8^4\right)^n=\left(...6\right)^n=...6\)
Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)
Tương tự: \(\left(2^4\right)^n=16^n=...6\)
=> \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)
Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10
b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\)
c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3
\(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)
jEm có cách khác cô ạ !
Bài 1 .
Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :
8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,
2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .
Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.
Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :
- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;
- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;
- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .
Bài 2 .
Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :
2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76
Vậy hai chữ số tận cùng của 2100 là 76.
Bài 3 .
Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :
71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343
= ( ...01 ) . 343 = ...43
Vậy 71991 có hai chữ số tận cùng là 43 .
Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :
- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;
- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;
- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;
- Số 26n ( n > 1 ) có tận cùng bằng 76.
bài này giải zậy hã
Ta có biểu thức sau có số hạng là :
( 999 - 100 ) + 1 + 900 ( số hạng )
A = ( 100 + 999 ) . 900 : 2 = 494550
\(494550chia\)\(het\)\(cho2\)
\(494550chia\)\(het\)\(cho5\)
Đồng dư đi nào:)) Thử thôi:v Lâu ko làm đồng dư quên hết kiến thức òi!
a)Ta có: \(999\equiv-001\left(mod1000\right)\text{ (1) }\Rightarrow\left(999\right)^4\equiv\left(-1\right)^4\equiv001\left(mod1000\right)\text{ (2) }\)
Từ (1) và (2) suy ra \(999^4+999\equiv-\left(001\right)+\left(001\right)\equiv000\left(mod1000\right)\)
Hay ta có đpcm.
b) Dạng này quen thuộc hơn nè:)
\(\text{Ta có: }49\equiv49\left(mod100\right)\) (1). Mặt khác \(49^2\equiv1\left(mod100\right)\Rightarrow49^4\equiv1\left(mod100\right)\Rightarrow49^5\equiv49^4.49\equiv1.49\equiv49\left(mod100\right)\) (2)
Từ (1) và (2) suy ra \(49^5-49\equiv49-49\equiv0\left(mod100\right)\)
Hay ta có đpcm.
P/s: chủ tus viết đề bài sai chính tả kìa:v