K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

x1,x2 là hai nghiệm của P(x) nên:

\(P\left[x_1\right]=ax^2_1+bx_1+c=0(1)\)

\(P\left[x_2\right]=ax^2_2+bx_2+c=0\)

\(P\left[x_1\right]-P\left[x_2\right]=a\left[x^2_1-x^2_2\right]+b\left[x_1-x_2\right]=0\)

\(a\left[x_1+x_2\right]\left[x_1-x_2\right]+b\left[x_1-x_2\right]=0\)

\(\left[x_1-x_2\right]\left[a\left\{x_1+x_2\right\}+b\right]=0\)

Vì x1 \(\ne\)x2 nên x1 - x2 \(\ne0\), do đó :

\(a\left[x_1+x_2\right]+b=0\Leftrightarrow b=-a\left[x_1+x_2\right](2)\)

Thế 2 vào 1 ta được :

\(ax^2_1-a\left[x_1+x_2\right]\cdot x_1+c=0\Rightarrow c=ax_1\left[x_1+x_2\right]-ax^2_1=ax_1x_2(3)\)

Thế 2 và 3 vào P(x) ta được :

P(x) = \(ax^2+bx+c=ax^2-ax\left[x_1+x_2\right]+ax_1x_2\)

       = \(ax^2-axx_1-axx_2+ax_1x_2=a\left[x_2-xx_1-xx_2+x_1x_2\right]\)

       = \(a\left[x\left\{x-x_1\right\}-x_2\left\{x-x_1\right\}\right]=a\left[x-x_1\right]\left[x-x_2\right]\)

Vậy P(x) = \(a\left[x-x_1\right]\left[x-x_2\right]\).

15 tháng 7 2019

\(x_1,x_2\)là hai nghiệm của P(x) nên:

\(P\left(x_1\right)=ax^2_1+bx_1+c=0\)(1)

\(\left(x_2\right)=ax^2_2+bx_2+c=0\)

\(P\left(x_1\right)-P\left(x_2\right)=a\left(x_1^2-x^2_2\right)+b\left(_1^2-x^2_2\right)=0\)

\(a\left(x_1^2+x^2_2\right)\left(x_1^2-x^2_2\right)+b\left(x_1^2-x^2_2\right)=0\)

\(\left(x_1^2-x^2_2\right)\left[a\left(x_1^2+x^2_2\right)+b\right]=0.\)

Vì \(x_1\ne x_2\)nên \(x_1^2-x^2_2=0\)do đó:

\(a\left(x_1^2+x^2_2\right)+b=0\Rightarrow b=-a\left(x_1^2+x^2_2\right)\)(2)

Thế (2) vào (1) ta được:

\(ax^2_1-a\left(x_1^2+x^2_2\right)x_1+c=0\Rightarrow c=ax_1\left(x_1+x_2\right)-ax^2_1=ax_1x_2\)(3)

Thế (2) và (3) vào P(x) ta được:

\(P\left(x\right)=ax^2+bx+c=ax^2-ax\left(x_1+x_2\right)+ax_1x_2\)

 \(=ax^2-axx_1-axx_2+ax_1x_2=a\left(x^2-xx_1-xx_2+x_1x_2\right)\)

\(=a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right).\)

Vậy \(P\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right).\)

23 tháng 6 2019

#)Giải :

Từ giả thiết ta suy ra được các tích x1.x2+x2.x3+...+xn.x1 chỉ nhận 1 trong 2 giá trị là 1 và (-1)

Mà x1.x2+x2.x3+...+xn.x1 = 0 => n = 2m

Đồng thời có m số hạng = 1, m số hạng = -1

Ta nhận thấy (x1x2)+(x2x3)...(xnx1) = x21.x22.....x2= 1 

=> Số các số hạng = -1 phải là số chẵn => m = 2k

=> n = 4k => n chia hết cho 4

22 tháng 7 2020

dễ vãi luôn ai thấy đúng cho

22 tháng 7 2020

Với n=2

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}\)

\(\Rightarrow x_1-x_2=\frac{1}{x_1}-\frac{1}{x_2}\)

\(\Rightarrow\left(x_1-x_2\right)-\frac{x_1-x_2}{x_1x_2}=0\)

\(\Rightarrow\left(x_1-x_2\right)\left(1-\frac{1}{x_1x_2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x_1-x_2=0\\1-\frac{1}{x_1x_2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x_1=x_2\\x_1x_2=1\end{cases}}}\)

*) n=k

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=...=x_k+\frac{1}{x_k}\)

thì \(x_1=x_2=x_3=...=x_k\)hoặc \(\left|x_1x_2...x_k\right|=0\)

Với n=k+1

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=x_3+\frac{1}{x_3}=...x_{k+1}+\frac{1}{x_1}\)

=> \(x_1+\frac{1}{x_2}=x_2+\frac{1}{x_3}=....=x_k+\frac{1}{x_{k+1}}=x_{k+1}+\frac{1}{x_1}\)

\(\Rightarrow x_{k-1}+\frac{1}{x_k}=x_k+\frac{1}{x_1}=x_{k+1}+\frac{1}{x_1}\)

\(\Rightarrow x_k-x_{k+1}=0\)

\(\Rightarrow x_k=x_{k+1}\)

\(\Rightarrow x_1=x_2=...=x_k=x_{k+1}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

Nếu $x_1,x_2$ là nghiệm của pt trên thì theo định lý Viete ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{m}{m}=1\end{matrix}\right.\)

Nếu \(x_1^2+x_2^2=2\)

\(\Leftrightarrow x_1^2+x_2^2+2x_1x_2-2x_1x_2=2\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=2\Leftrightarrow \frac{4(m-1)^2}{m^2}-2=2\)

\(\Leftrightarrow \frac{4(m-1)^2}{m^2}=4\Rightarrow 4(m-1)^2=4m^2(*)\)

Khi đó:

\(\Delta=4(m-1)^2-4m^2=0\) theo $(*)$

Do đó pt đã cho có nghiệm kép.

11 tháng 9 2019

Lời giải sẽ dài lắm nhé

x1,x2 là hai nghiệm của \(P(x)\)nên :

\(P(x_1)=ax_1^2+bx_1+c=0\)                                                      \((1)\)

\(P(x_2)=ax^2_2+bx^2+c=0\)

\(P(x_1)-P(x_2)=a\left[x^2_1-x^2_2\right]+b\left[x_1-x_2\right]=0\)

\(a\left[x_1+x_2\right]\left[x_1-x_2\right]+b\left[x_1-x_2\right]=0\)

\(\left[x_1-x_2\right]\left[a\left\{x_1+x_2\right\}+b\right]=0\)

Vì x1 \(\ne\)x2 nên x1 - x2 \(\ne\)0 do đó 

\(a\left[x_1+x_2\right]+b=0\Rightarrow b=-a\left[x_1+x_2\right]\)                                                  \((2)\)

Thế 2 vào 1 ta được :

\(ax^2_1-a\left[x_1+x_2\right]\cdot x_1+c=0\)

\(\Rightarrow c=ax_1\left[x_1+x_2\right]-ax^2_1=ax_1x_2\)                                          \((3)\)

Thế 2 vào 3 vào P\((x)\)ta được :

\(P(x)=ax^2+bx+c=ax^2-ax\left[x_1+x_2\right]+ax_1x_2\)

\(=ax^2-axx_1-axx_2+ax_1x_2=a\left[x^2-xx_1-xx_2+x_1x_2\right]\)

\(=a\left[x\left\{x-x_1\right\}-x_2\left\{x-x_1\right\}\right]=a\left[x-x_1\right]\left[x-x_2\right]\)

Vậy : ....

24 tháng 12 2018

Bài 1:

nếu x1<x2=>2018.x1-3<2018.x2

=>f(x1)<f(x2)

Bài 2:

nếu x dương=>100x2+2 dương

nếu x âm=>100x2+2 dương vì  xluôn dương

=>f(x)=f(-x)

Bài 3:

nếu x1<x2=>-2019x1+1<2019x2+1

=>f(x1)<f(x2)

31 tháng 10 2020

Biểu thức cuối là \(\frac{\sqrt{x_n^2-1}}{x_1}\) hay là \(\frac{\sqrt{x_n^2-1}}{x_{n+1}}\)