có số tự nhiên nào mà tổng abc + bac + cab là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b\)
\(=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Do (3;37)=1 nên để \(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương ta cần a+b+c=111 hoặc a+b+c=1112n+1 (*)
Mà \(a;b;c\le9\)và \(a\ne0\) => \(a+b+c\le27\) nên không thể thỏa mãn (*) được
=> Ta không thể tìm được các số tự nhiên a;b;c => đpcm
Ta thấy \(\overline{abc}+\overline{bca}+\overline{cab}=111\left(a+b+c\right)=3.37\left(a+b+c\right)\)
Do 3 và 37 là các số nguyên tố, để \(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương thì \(a+b+c=3.37.k^2\left(k\in N,k\ne0\right)\)
Tuy nhiên do a, b, c là các chữ số nên \(a+b+c\le27\)
Vậy không tồn tại số tự nhiên thỏa mãn yêu cầu đề bài.
A= 111a+111b+111c=111(a+b+c)
Chỉ với a+b+c=5 thì A=555 thì A không là số chính phương rồi.
ta có
s = abc + bca + cab
=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>S = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> S = 111a + 111b + 111c
=> S = 111( a+b+c )= 37 . 3( a+b + c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
không chính phương
\(S=\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\), ta có \(a,b,c\ne0\).
\(S=100a+10b+c+100a+10c+b+...+100c+10b+a\)
\(S=222\left(a+b+c\right)\)
Ta thấy \(222=2.3.37\) nên muốn \(S\) là số chính phương thì \(a+b+c=2^x.3^y.37^z\) với \(x,y,z\) là các số tự nhiên lẻ. Do đó \(x,y,z\ge1\) hay \(a+b+c\ge222\), vô lí.
Vậy không tồn tại số tự nhiên có 3 chữ số \(a,b,c\) thỏa mãn S là số chính phương.
mà Lê Song Phương ơi
mình cần bạn giải chi tiết ra đoạn từ dòng số 2 xuống dòng số 3 mình giải được:
2x(aaa+bbb+ccc)
2x111x(a+b+c)
222x(a+b+c)
đk bạn
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương
1, S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Vì 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương
2,Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên
ta được 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84.
Số 3n+1 bằng 37; 73; 121; 181; 253.Chỉ có 121 là số chính phương.
Vậy n = 40
1) S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương
2) Xin lỗi mình chỉ biết làm câu 1 thôi
Có : abc+bca+cab = 100a+10b+c+100b+10c+a+100c+10a+b = 111.(a+b+c)
Để 111.(a+b+c) là 1 số chính phương thì a+b+c phải chia hết cho 111
Mà 1 < = a+b+c < = 27 => ko tồn tại a,b,c để 111.(a+b+c) chính phương
k mk nha
Ta có:abc+bca+cab=p
\(\Rightarrow p=100a+10b+c+100b+10c+a+100c+10a+b\)
\(\Rightarrow p=111a+111b+111c\)
\(\Rightarrow111.\left(a+b+c\right)=p\)
\(\Rightarrow p=3.\left(a+b+c\right).37\)
Vì \(p⋮37\)\(\Rightarrow\)Để p là SCP
\(\Rightarrow p⋮37^2\)
\(\Rightarrow3.\left(a+b+c\right)=37\)
\(\Rightarrow\left(a+b+c\right)=\frac{37}{3}\)
\(\Rightarrow\)Không tồn tai số tự nhiên có 3 chữ số \(\)abc
Ta có: \(\overline{abc}+\overline{bac}+\overline{cab}\)
\(=\left(100a+10b+c\right)+\left(100b+10a+c\right)+\left(100c+10a+b\right)\)
\(=\left(100a+10a+a\right)+\left(100b+10b+b\right)+\left(100c+10c+c\right)\)
\(=111a+111b+111c\)
\(=111\left(a+b+c\right)\)
\(=37.3.\left(a+b+c\right)\)
Vì \(a+b+c\le27\)nên a + b + c không chia hết cho 37
\(\Rightarrow\)3(a + b + c) không chia hết cho 37
Vậy \(\overline{abc}+\overline{bac}+\overline{cab}\)không thể là số chính phương