Cho tam giác ABC vuông tại A
AB=6cm; AC=8cm
I,M,K lần lượt là trung điểm của AB, BC, AC
a) CM tứ giác AIMK là hcn và tính diện tích của nó
b) Tính độ dài đoạn AM
c) Gọi P, J, H, S lần lượt là trung điểm của AI, IM, MK, AK.
CM: PH vuông góc với JS
#)Giải :
(Bạn tự vẽ hình :P)
a) Xét ΔABC có:
IB = IA ( I là tia đối của AB)
BM = CM (M là tia đối của BC)
=> IM là đương trung bình của ΔABC
=> IM // AC và IM = 1/2AC
mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC
=> IM // AK và IM = AK
=> Tứ giác AIMK là hình bình hành có góc A = 90o
=> AIMK là hình chữ nhật
Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)
AK = CK = AC/2= 8/2= 4 (K là tia đối của AC)
Diện tích hình chữ nhật AIMK :
SAIMK = AI.AK = 3.4 = 12 cm2
b) Áp dụng Py-ta-go vào Δ vuông ABC có:
BC2 = AB2 + AC2
hay BC2 = 62 + 82 = 100
=> BC = 10
Xét Δ vuông ABC có :
AM là đường trung tuyến ứng với BC
=> AM = 1/2BC = 1/2.10
=> AM = 5
Vậy AM = 5cm
c) Có IM = AK (cạnh đối hình chữ nhật AIMK)
mà JI = JM = 1/2IM và SA = SK = 1/2AK
=> JI = JM = SA = SK (1)
Có IA = MK (cạnh đối hình chữ nhật AIMK )
mà PI = PA = 1/2IA và HM = HK = 1212MK
=> PI = PA = HM = HM (2)
Có góc A = góc I = góc M = góc K (3)
Từ (1) (2) và (3) suy ra :
ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)
=> JP = JH = SP = SH (các cạnh tương ứng )
=> Tứ giác JPSH là hình thoi
=> PH vuông góc với JS (tính chất đường chéo hình thoi)