Cho tam giác ABC và hai đường trung tuyến BN và CM vuông góc với nhau. Chứng minh rằng:
a)\(cotB+cotC\ge\frac{2}{3}\)
b)\(AC^2+AB^2=5BC^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đg cao AH, trung tuyến AD, trọng tâm G
Tg AHD vuông tại H nên \(AH\le AD\Rightarrow\dfrac{BC}{AH}\ge\dfrac{BC}{AD}\left(4\right)\)
Ta có \(\cot\widehat{B}+\cot\widehat{C}=\dfrac{BH}{AH}+\dfrac{CH}{AH}=\dfrac{BC}{AH}\ge\dfrac{BC}{AD}\left(1\right)\)
Mà BM vuông góc CN nên GD là trung tuyến ứng vs ch BC
\(\Rightarrow BC=2GD\left(2\right)\)
Mà G là trọng tâm nên \(3GD=AD\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Rightarrow\cot\widehat{B}+\cot\widehat{C}\ge\dfrac{BC}{AD}=\dfrac{2GD}{3GD}=\dfrac{2}{3}\)
a/ BN và CN cắt nhau tại I => \(NI=\frac{BI}{2}\) và \(MI=\frac{CI}{2}\)
+ Ta có \(AC=2CN\Rightarrow AC^2=4CN^2\)và \(AB=2BM\Rightarrow AB^2=4BM^2\)
+ Xét tg vuông BIM có \(BM^2=BI^2+MI^2\Rightarrow4BM^2=AB^2=4\left(BI^2+MI^2\right)=4\left(BI^2+\frac{CI^2}{4}\right)\)
+ Xét tg vuông CIN có \(CN^2=CI^2+NI^2\Rightarrow4CN^2=AC^2=4\left(CI^2+NI^2\right)=4\left(CI^2+\frac{BI^2}{4}\right)\)
\(\Rightarrow AB^2+AC^2=4\left[\left(BI^2+CI^2\right)+\frac{BI^2+CI^2}{4}\right]\)
Mà trong tg vuông BIC có \(BC^2=BI^2+CI^2\)
\(\Rightarrow AB^2+AC^2=4\left(BC^2+\frac{BC^2}{4}\right)=5BC^2\)
b/
Bạn tham khảo nha : https://diendantoanhoc.net/topic/53004-cho-tam-giac-abc-va-hai-trung-tuy%E1%BA%BFn-bn-va-cm-vuong-goc-v%E1%BB%9Bi-nhau-ch%E1%BB%A9ng-minh-cotgbcotgc-23/page-1
a)