K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

Đặt : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1225}\)

\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{2450}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{49.50}\)

\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{49}-\frac{1}{50}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(A=2.\frac{12}{25}\)

\(A=\frac{24}{25}\)

15 tháng 9 2016

Bài 1

Nhân 2 vào biểu thức

Rút gọn và trừ đi 1 lần nó

còn lại \(\frac{1}{2}_{ }-\frac{1}{2^{10}}\)

15 tháng 9 2016

\(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

 \(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{10}}\)

20 tháng 6 2019

#)Giải :

Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(A=\frac{1}{5}-\frac{1}{10}\)

\(A=\frac{1}{10}\)

20 tháng 6 2019

cho mk hỏi chút là tại sao ta lấy 1/5 - 1/6 r + 1/6....

31 tháng 7 2019

Trả lời

x:(1/2+1/3+1/6)=2019

x:6/6                =2019

     x:1              =2019

     =>x             =2019.1

     =>x             =2019

Học tốt !

31 tháng 7 2019

x : (\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{6}\)) = 2019

x : 1 = 2019

x = 2019

23 tháng 6 2020

ai giải giúp mình nhanh với

24 tháng 6 2020

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)

\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)

\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}\)

\(=\frac{8}{9}\)  \((1)\)

\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)

\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}\)

\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\)   \((2)\)

Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)

Học tốt

Nhớ kết bạn với mình

28 tháng 11 2016

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)

\(=\frac{x^2-1}{x^2-1}:\frac{x+2006}{x}=\frac{x}{x+2006}\)

13 tháng 7 2016

A = -1 - 1/3 - 1/6 - 1/10 - 1/15 - ... - 1/1225

A = -(1 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/1225)

A = -(2/2 + 2/6 + 2/12 + 2/20 + 2/30 + ... + 2/2450)

A = -2.(1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/49.50)

A = -2.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/49 - 1/50)

A = -2.(1 - 1/50)

A = -2.49/50

A = -49/25