Tìm m để p\(mx^2+x+m-1=0\)t có 2 nghiệm phân biệt x1, x2 thỏa mãn \(^{|\frac{1}{x1}-\frac{1}{x2}|>1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Ở trên có đoạn mình đánh lộn \(\Delta'\) ra \(\Delta\) nhé
\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)
áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)
|x1-x2|=3
th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1): x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)
th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)
=> pt có 2 nghiệm... <=> m=4
Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)
Theo viet ta có
\(x_1+x_2=2\)
Vì x1 là nghiệm của phương trình
=> \(x_1^2=2x_1-m\)
Khi đó
\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)
\(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))
Phương trình đã cho có nghiệm khi ∆ ' = 1 - m ≥ 0 ⇔ m ≤ 1 .
Theo định lí Vi-ét, ta có: x 1 + x 2 = - 2 x 1 x 2 = m .
Kết hợp với điều kiện của bài toán 3 x 1 + 2 x 2 = 1 ta có hệ phương trình:
x 1 + x 2 = - 2 3 x 1 + 2 x 2 = 1 ⇔ x 1 = 5 x 2 = - 7
Do đó,x1.x2 = - 35= m (thỏa mãn m ≤ 1 ).
Chọn D.
a) để pt có nghiệm <=> đen ta phẩy >= 0
<=> (-(m-1))2 - 1(-3m+m2) >= 0
<=> (m-1)2 +3m-m2 >= 0
<=> m2-2m+1+3m-m2 >= 0
<=> m+1 >= 0
<=> m >= -1
vậy khi m >= -1 thì pt có nghiệm
b) khi m >= -1 thì pt có nghiệm ( theo a)
theo vi-ét ta có: x1+x2 = 2(m-1) (1)
x1.x2 = -3m + m2 (2)
theo đầu bài ta có: x12 + x22=16
<=> x12+ 2x1x2+ x22 -2x1x2= 16
<=> (x1+x2)2 -2x1x2 = 16 (3)
thay (1) và (2) và (3) rồi tính m.
kết quả: khi m=3 thì pt có nghiệm thỏa mãn đk đó.
Ta có \(\Delta=1-4m\left(m-1\right)>0\)
=> \(-4m^2+4m+1>0\)<=> \(\frac{1-\sqrt{2}}{2}< x< \frac{1+\sqrt{2}}{2}\)
Theo Vi-et ta có
\(\hept{\begin{cases}x_1+x_2=\frac{-1}{m}\\x_1x_2=\frac{m-1}{m}\end{cases}}\)
Ta có \(|\frac{1}{x_1}-\frac{1}{x_2}|>1\)x1,x2 khác 0
<=> \(\frac{1}{x_1^2}+\frac{1}{x_2^2}-\frac{2}{x_1x_2}>1\)
<=> \(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x^2_1x_2^2}-\frac{2}{x_1x_2}>1\)
<=>\(\left(x_1+x_2\right)^2-4x_1x_2>x^2_1x_{ }_2^2\)
<=> \(\frac{1}{m^2}-\frac{4\left(m-1\right)}{m}>\left(\frac{m-1}{m}\right)^2\)
<=> \(1-4m\left(m-1\right)>\left(m-1\right)^2\)
<=> \(5m^2-6m< 0\)
<=> \(0< m< \frac{6}{5}\)
Kết hợp ta được
\(0< m< \frac{6}{5}\)và \(m\ne1\)do \(x_1,x_2\ne0\)
ĐK chỗ denta phải là ..<m<... chứ a?