Cho (O , R) đường kính AC cố điịnh kẻ tiếp tuyến Ax với đường tròn tại A . Trên Ax lấy M qua M kẻ tiếp tuyến MB với (O) ( B khác A ) tiếp tuyến của đường trong tại C cắt AB tại D nối OM cắt AB tại I , cắt cung nhỏ AB tại E.
a, Tìm vị trí của M trên Ax để AOBE là hình thoi
b, OM \(\perp\) MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha
1, Ta có: MA = MC (t/c 2 tt cắt nhau)
OA = OC (t/c 2 tt cắt nhau)
=> OM là đường trung trực của AC
=> OM _|_ AC hay \(\widehat{OEC}=90^o\)
Có: \(\widehat{OBD}=90^o\) (t/c tt của đường tròn)
XÉt tứ giác OBDE có: \(\widehat{OEC}+\widehat{OBD}=90^o+90^o=180^o\)
Mà 2 góc này ở vị trí đối diện
=> tứ giác OBDE nội tiếp (đpcm)
2, Xét t/g ABC có: góc ACB là góc nội tiếp chắn nửa đường tròn
=> \(\widehat{ACB}=90^o\) hay BC _|_ AD
Áp dụng hệ thức b2=a.b' vào t/g ABD vuông tại B, đường cao BC có: \(AC.AD=AB^2=\left(2R\right)^2=4R^2\) (vì AB là đường kính) (đpcm)
3, Gọi K là trung điểm của MF (K thuộc MF) => KM=KF
Ta có: AM _|_ AB (t/c tt) ; BF _|_ AB (t/c tt) (1)
=> AM // BF => tứ giác AMBF là hình thang
Xét hình thang AMBF có: KM = KF ; OA = OB (gt)
=> OK là đường trung bình của hình thang AMBF
=> OK // AM // BF mà AM _|_ AB (cmt)
=> OK _|_ AB (1)
Lại có: t/g MOF nội tiếp đường tròn => O thuộc tròn ngoại tiếp t/g MOF (2)
Từ (1) và (2) => đpcm
a: Xét (O) có
MA.MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADB=1/2*180=90 độ
=>góc ADM=90 độ=góc AEM
=>AMDE nội tiếp
b: AMDE nội tiếp
=>góc ADE=góc AMO=góc ACO
a: góc MAO+góc MCO=180 độ
=>MAOC nội tiếp
góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADM=góc AEM=90 độ
=>AEDM là tứ giác nội tiếp
a: Xét tứ giác KAOM có
\(\widehat{KAO}+\widehat{KMO}=180^0\)
Do đó: KAOM là tứ giác nội tiếp
b: Xét (O) có
KA là tiếp tuyến
KM là tiếp tuyến
Do đó: KA=KM
hay K nằm trên đường trung trực của AM(1)
Ta có: OA=OM
nên O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OK là đường trung trực của AM
hay OK\(\perp\)AM
Xét ΔOAK vuông tại A có AI là đường cao
nên \(OI\cdot OK=OA^2\)
a: Xét ΔMCD và ΔMEC có
góc MCD=góc MEC
góc CMD chung
=>ΔMCD đồng dạng với ΔMEC
b: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại K
ΔMCO vuông tại C có CK là đường cao
nên MK*MO=MC^2
c: góc AOC=2*góc AIC=120 độ
=>góc AOM=góc COM=60 độ
Xét ΔCOM vuông tại C có tan COM=CM/CO
=>CM/R=căn 3
=>CM=R*căn 3