giả pt:
2( x^2 +1-1)^2 - 5(x^2+x-1)(x^2-x+1) +2(x^2-x+1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Viet: \(x_1+x_2=-2\left(m-2\right)\)
Do \(ac=-m^2-5< 0\) \(\forall m\Rightarrow\) pt luôn luôn có 2 nghiệm trái dấu
Mà \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2+1\right|=x_2+1\end{matrix}\right.\)
\(\left|x_1\right|-\left|x_2+1\right|=5\)
\(\Leftrightarrow-x_1-x_2-1=5\)
\(\Leftrightarrow x_1+x_2=-6\)
\(\Leftrightarrow-2\left(m-2\right)=-6\Rightarrow m=5\)
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
`20((x-2)/(x+1))^2-5((x+2)/(x-1))^2+48(x^2-4)/(x^2-1)=0(x ne +-1)`
Đặt `(x-2)/(x+1)=a,(x+2)/(x-1)=b`
`pt<=>20a^2-5b^2+48ab=0`
`<=>20a^2+48ab-5b^2=0`
`<=>20a^2-2ab+50ab-5b^2=0`
`<=>2a(a-10b)+5b(10a-b)=0`
`<=>(a-10b)(2a+5b)=0`
Đến đây dễ rồi bạn tự giải tiếp.
ĐKXĐ: x \(\ne\)\(\pm\)1
Ta có: \(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\cdot\dfrac{x^2-4}{x^2-1}=0\)
Đặt: \(\dfrac{x-2}{x+1}=a\) ; \(\dfrac{x+2}{x-1}=b\)
=> ab = \(\dfrac{x^2-4}{x^2-1}\)
Do đó, ta có pt mới: 20a2 - 5b2 + 48ab = 0
<=> 20a2 + 50ab - 2ab - 5b2 = 0
<=> (10a - b)(2a + 5b) = 0
<=> \(\left[{}\begin{matrix}10a=b\\2a=-5b\end{matrix}\right.\)
TH1: 10a = b => \(10\cdot\dfrac{x-2}{x+1}=\dfrac{x+2}{x-1}\)
<=> 10(x - 2)(x - 1) = (x + 2)(x + 1)
<=> 10x2 - 30x + 20 = x2 + 3x + 2
<=> 9x2 - 33x + 18 = 0
<=> 9x2 - 27x - 6x + 18 = 0
<=> (9x - 6)(x - 3) = 0
<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)(tm)
TH2: \(2a=-5b\)=> \(2\cdot\dfrac{x-2}{x+1}=-5\cdot\dfrac{x+2}{x-1}\)
=> (2x - 4)(x - 1) = (-5x - 10)(x + 1)
<=> 2x2 - 6x + 4 = -5x2 - 15x - 10
<=> 7x2 + 9x + 14 = 0
=> pt vn
xin lỗi mình cx chua làm đc
khi nào có ai làm đc thì nhớ kêu mik vs
vs lại ra câu hỏi ngắn thôi!!!!
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
\(2\left(x^2+x-1\right)^2-5\left(x^2+x-1\right)\left(x^2-x+1\right)+2\left(x^2-x+1\right)^2=0\)
Đặt \(x^2+x-1=a;x^2-x+1=b\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-1=2x^2-2x+2\\x^2-x+1=2x^2+2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+3x-3=0\\-x^2-3x+3=0\end{matrix}\right.\Leftrightarrow x^2-3x-3=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-3\right)=9+4\cdot3=21\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{21}}{2}\\x_2=\dfrac{3+\sqrt{21}}{2}\end{matrix}\right.\)