K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2023

học tốt nhé !

6 tháng 3 2023

2 nghiệp pt phải:

 (2m - 1)2-4(m2 - 1)≥0

Vì x1 là nghiệm nên

x21−(2m−1)x1+m2−1=0

<=> x12−(2m−1)x1+m2−1=0

<=>x12−2mx1+m2=x1+1

<=> 9m2=0 <=>m=0

#YQ

6 tháng 3 2023

9m2=0 là sao ạ

30 tháng 5 2021

Để pt có nghiệm \(\Leftrightarrow\Delta=-4m+5\ge0\) \(\Leftrightarrow m\le\dfrac{5}{4}\)

\(\left(x_1-x_2\right)^2=x_1-3x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)

\(\Leftrightarrow-4m+5=x_1-3x_2\) (1)

Kết hợp (1) và viet có:  \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\\x_1x_2=m^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=6m-6\\x_1-3x_2=5-4m\\x_1x_2=m^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{3m-3}{2}\\x_1=5-4m+3x_2=\dfrac{m+1}{2}\\x_1x_2=m^2-1\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{3m-3}{2}\right)\left(\dfrac{m+1}{2}\right)=m^2-1\)

\(\Leftrightarrow1=m^2\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)

Vậy...

15 tháng 4 2021

Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)

\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)

Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)

\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)

15 tháng 4 2021

Để pt có hai nghiệm phân biệt thì Δ' > 0

<=> ( m + 1 )2 - 2m - 2 > 0

<=> m2 + 2m + 1 - 2m - 2 > 0

<=> m2 - 1 > 0 => m > 1 hoặc m < -1

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)

Khi đó x12 + x22 = 8

<=> ( x1 + x2 )2 - 2x1x2 = 8

<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0

<=> 4m2 + 4m - 8 = 0

<=> m2 + m - 2 = 0

<=> ( m - 1 )( m + 2 ) = 0

<=> m = 1 ( loại ) hoặc m = -2 (tm)

Vậy ...

a) Thay m=-2 vào phương trình, ta được:

\(x^2+4x+3=0\)

a=1; b=4; c=3

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)

Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)

\(=4m^2-4m+1-4m^2+8\)

\(=-4m+9\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-4m+9>0\)

\(\Leftrightarrow-4m>-9\)

hay \(m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)

Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)

\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)

\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)

\(\Leftrightarrow-4m=-4\)

hay m=1(thỏa ĐK)

Vậy: m=1

13 tháng 5 2021

PT có 2 nghiệm phân biệt

`<=>Delta>0`

`<=>(2m-1)^2-4(m^2-2)>0`

`<=>4m^2-4m+1-4m^2+8>0`

`<=>-4m+9>0`

`<=>m<9/4`

Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`

`|x_1-x_2|=\sqrt5`

`<=>(x_1-x_2)^2=5`

`<=>(x_1+x_2)^2-4(x_1.x_2)=5`

`<=>4m^2-4m+1-4m^2+8=5`

`<=>-4m+8=5`

`<=>4m=3`

`<=>m=3/4(tm)`

Vậy `m=3/4=>|x_1-x_2|=\sqrt5`

30 tháng 5 2016

\(\frac{3}{2}< m< \frac{9}{2}\)

30 tháng 5 2016

xin lỗi đánh nhầm  ta tìm được: 4  < m < 9         bạn nhé